Applied Physics B

, Volume 78, Issue 3–4, pp 503–511 | Cite as

Wavelength modulation absorption spectroscopy with 2 f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows

  • J.T.C. Liu
  • J.B. Jeffries
  • R.K. Hanson


Multiplexed fiber-coupled diode lasers are used to probe second-harmonic line shapes of two near-infrared water absorption features, at 1343 nm and 1392 nm, in order to infer temperatures in gases containing water vapor, such as combustion flows. Wavelength modulation is performed at 170 kHz, and is superimposed on 1-kHz wavelength scans in order to recover full second-harmonic line shapes. Digital waveform generation and lock-in detection are performed using a data-acquisition card installed in a PC. An optimal selection of the modulation indices is shown to greatly simplify data interpretation over extended temperature ranges and to minimize the need for calibration when performing 2 f ratio thermometry. A theoretical discussion of this optimized strategy for 2 f ratio thermometry, as well as results from experimental validations in a heated cell, at pressures up to atmospheric, are presented in order to illustrate the utility of this technique for rapid temperature measurements in gaseous flow fields.


Diode Laser Absorption Spectroscopy Modulation Index Wavelength Modulation Waveform Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.G. Allen: Meas. Sci. Technol. 9, 545 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson: AIAA J. 34, 489 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    H. Teichert, T. Fernholtz, V. Ebert: Appl. Opt. 42, 2043 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Silver, D.J. Kane: Meas. Sci. Technol. 10, 845 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    D. Richter, D.G. Lancaster, F.K. Tittel: Appl. Opt. 39, 4444 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    S.I. Chou, D.S. Baer, R.K. Hanson, W.Z. Collison, T.Q. Ni: J. Vac. Sci. Technol. B 19, 477 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    D.C. Hovde, J.T. Hodges, G.E. Scace, J.A. Silver: Appl. Opt. 40, 829 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    L.C. Philippe, R.K. Hanson: Opt. Lett. 16, 2002 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson: Proc. Combust. Inst. 28, 587 (2000) CrossRefGoogle Scholar
  10. 10.
    V. Nagali, R.K. Hanson: Appl. Opt. 36, 9518 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    M.P. Arroyo, R.K. Hanson: Appl. Opt. 32, 6104 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    E.R. Furlong: Diode-laser Absorption Spectroscopy Applied for the Active Control of Combustion. Ph.D. dissertation, Department of Mechanical Engineering, Stanford University, Stanford, CA, 1998 Google Scholar
  13. 13.
    V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson: J. Quantum Spectrosc. Radiat. Transfer 57, 795 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    D.S. Bomse, A.S. Stanton, J.A. Silver: Appl. Opt. 31, 718 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    T. Fernholtz, H. Teichert, V. Ebert: Appl. Phys. B 75, 229 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    T. Aizawa: Appl. Opt. 40, 4894 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    J.J. Nikkari, J.M. Di Iorio, M.J. Thomson: Appl. Opt. 41, 446 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    T.P. Jenkins, P.A. DeBarber, M. Oljaca: A Rugged Low-cost Diode Laser Sensor for H2O and Temperature Applied to a Spray Flame. Presented at: 41st Aerospace Sciences Meet. Exhib., American Institute of Aeronautics and Astronautics, Reno, NV, 6–9 January (2003) Google Scholar
  19. 19.
    J.M. Supplee, E.A. Whittaker, W. Lenth: Appl. Opt. 33, 6294 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    J. Reid, D. Labrie: Appl. Phys. B 26, 203 (1981) ADSCrossRefGoogle Scholar
  21. 21.
    L.C. Philippe, R.K. Hanson: Appl. Opt. 32, 6090 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    P. Kluczynski, O. Axner: Appl. Opt. 38, 5803 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    R. Arndt: J. Appl. Phys. 36, 2522 (1965) ADSCrossRefGoogle Scholar
  24. 24.
    L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino: J. Quant. Spectrosc. Radiat. Transfer 82, 5 (2003) ADSCrossRefGoogle Scholar
  25. 25. Scholar
  26. 26.
    H. Wahlquist: J. Chem. Phys. 35, 1708 (1961) ADSCrossRefGoogle Scholar
  27. 27.
    G.V.H. Wilson: J. Appl. Phys. 34, 3276 (1963) ADSCrossRefGoogle Scholar
  28. 28.
    D.C. Hovde, C.A. Parsons: Appl. Opt. 36, 1135 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations