Applied Physics B

, Volume 78, Issue 2, pp 241–248 | Cite as

Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model

Article

Abstract

The temporal behavior of the laser-induced incandescence (LII) signal is often used for soot-particle sizing, which is possible because the cooling behavior of a laser-heated particle is dependent on the particle size. The heat- and mass-transfer model describing the temporal LII-signal behavior has in this work been extended to include the influence of the primary particle-size distribution and the spatial distribution of laser energy. When evaluating primary particle size, a monodisperse size distribution is often assumed, although it is well known that a polydisperse distribution is a better description of the real situation. In this work the impact of this assumption is investigated for Gaussian and lognormal size distributions of different widths, and the result is a significant bias towards larger particle sizes because of the higher influence of larger particles on the LII signal. Moreover, the dependence of the LII signal on the laser fluence is studied for different spatial distributions of the laser energy. The top-hat, Gaussian sheet and Gaussian beam distributions were tested and it is established that the LII signal is strongly dependent on the choice of distribution. However, in this case the influence of particle size is minor.

References

  1. 1.
    T.R. Barfknecht: Prog. Energy Combust. Sci. 9, 199 (1983) CrossRefGoogle Scholar
  2. 2.
    L.A. Melton: Appl. Opt. 23, 2201 (1984) Google Scholar
  3. 3.
    R.J. Santoro, C.R. Shaddix: in Applied Combustion Diagnostics, ed. by K. Kohse-Köinghaus, J.B. Jeffries (Taylor & Francis, London 2002) pp. 252–286 Google Scholar
  4. 4.
    P.-E. Bengtsson, M. Aldén: Appl. Phys. B 60, 51 (1995) Google Scholar
  5. 5.
    B. Axelsson, R. Collin, P.-E. Bengtsson: Appl. Phys. B 72, 367 (2001) Google Scholar
  6. 6.
    R.L. Vander Wal: Proc. Combust. Inst. 27, 59 (1998) Google Scholar
  7. 7.
    R.L. Vander Wal, T.M. Ticich: Appl. Opt. 38, 1444 (1999) Google Scholar
  8. 8.
    C.J. Dasch: Appl. Opt. 23, 2209 (1984) Google Scholar
  9. 9.
    D.L. Hofeldt: SAE paper 930079 (Society of Automotive Engineers, Warrendale, PA 1993) Google Scholar
  10. 10.
    S. Will, S. Schraml, K. Bader, A. Leipertz: Appl. Opt. 37, 5647 (1998) Google Scholar
  11. 11.
    P. Roth, A.V. Filippov: J. Aerosol Sci. 27, 95 (1996) CrossRefGoogle Scholar
  12. 12.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens: Combust. Flame 116, 291 (1999) CrossRefGoogle Scholar
  13. 13.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder: J. Heat Transfer 123, 814 (2001) CrossRefGoogle Scholar
  14. 14.
    B.J. McCoy, C.Y. Cha: Chem. Eng. Sci. 29, 381 (1974) CrossRefGoogle Scholar
  15. 15.
    A.V. Filippov, D.E. Rosner: Int. J. Heat Mass Transfer 43, 127 (2000) CrossRefMATHGoogle Scholar
  16. 16.
    H.A. Michelsen: J. Chem. Phys. 118, 7012 (2003) CrossRefGoogle Scholar
  17. 17.
    P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix: Appl. Opt. 40, 2443 (2001) Google Scholar
  18. 18.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder: in 34th Natl. Heat Transfer Conf., NHTC2000-12132, 2000, p. 1–9 Google Scholar
  19. 19.
    W.H. Dalzell, A.F. Sarofim: J. Heat Transfer 91, 100 (1969) Google Scholar
  20. 20.
    H.R. Leider, O.H. Krikorian, D.A. Young: Carbon 11, 555, 1973 CrossRefGoogle Scholar
  21. 21.
    H. Bockhorn, F. Fetting, A. Heddrich: in 21st Int. Symp. Combustion (The Combustion Institute, Pittsburgh, PA 1986) pp. 1001–1012 Google Scholar
  22. 22.
    Ü.Ö. Köylü, G.M. Faeth: Combust. Flame 89, 140 (1992) CrossRefGoogle Scholar
  23. 23.
    B.L. Wersborg, J.B. Howard, G.C. Williams: in 14th Int. Symp. Combustion (The Combustion Institute, Pittsburgh, PA 1973) pp. 929–940 Google Scholar
  24. 24.
    T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro: Appl. Opt. 34, 7083 (1995) Google Scholar
  25. 25.
    N.P. Tait, D.A. Greenhalgh: Ber. Bunsenges. Phys. Chem. 97, 1619 (1993) Google Scholar
  26. 26.
    A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz: Appl. Opt. 36, 3500 (1997) Google Scholar
  27. 27.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens: Appl. Phys. B 67, 115 (1998) CrossRefGoogle Scholar
  28. 28.
    R.L. Vander Wal, M.Y. Choi: Carbon 37, 231 (1999) CrossRefGoogle Scholar
  29. 29.
    S. Dankers, S. Schraml, S. Will, A. Leipertz: Chem. Eng. Technol. 25, 1160 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Combustion PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations