Advertisement

Applied Physics B

, Volume 78, Issue 2, pp 211–215 | Cite as

Aging of the ferroelectric hysteresis in Ce-doped Strontium-Barium-Niobate observed by holographic phase gratings

  • U. Dörfler
  • T. Granzow
  • Th. Woike
  • M. Wöhlecke
  • R. Pankrath
  • M. Imlau
Article

Abstract

The ferroelectric hysteresis of Strontium-Barium-Niobate single crystals doped with Ce (SBN:Ce) is measured by a holographic method. The hysteresis loop flattens out when measured repeatedly. The size of this aging effect strongly depends on the modulation depth m of the light intensity pattern: for m=1 the aging is less pronounced than for smaller m. This behavior is explained in the context of the model of frozen internal charges for the ferroelectric relaxor SBN.

Keywords

Light Intensity Hysteresis Loop Aging Effect Modulation Depth Intensity Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Glass: J. Appl. Phys. 40, 4699 (1969) Google Scholar
  2. 2.
    L.E. Cross: Ferroelectrics 76, 241 (1987) Google Scholar
  3. 3.
    J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, R. Pankrath: Europhys. Lett. 55, 781 (2001) CrossRefGoogle Scholar
  4. 4.
    V. Westphal, W. Kleemann, M.D. Glinchuk: Ferroelectrics 267, 157 (2002) CrossRefGoogle Scholar
  5. 5.
    F. Kahmann, R. Matull, R.A. Rupp, J. Seglins: Phase Transit. 40, 171 (1992) Google Scholar
  6. 6.
    T. Woike, T. Volk, U. Dörfler, R. Pankrath, L. Ivleva, M. Wöhlecke: Ferroelectric Lett. 23, 127 (1998) Google Scholar
  7. 7.
    V.V. Gladkii, V.A. Kirikov, S.V. Nekhlyudov, T.R. Volk, L.I. Ivleva: JETP Lett. 71, 24 (2000) CrossRefGoogle Scholar
  8. 8.
    V.V. Gladkii, V.A. Kirikov, S.V. Nekhlyudov, T.R. Volk, L.I. Ivleva: Physics of the Solid State 42, 1334 (2000) CrossRefGoogle Scholar
  9. 9.
    T. Granzow, U. Dörfler, T. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, W. Kleemann: Phys. Rev. B 63, 174101 (2001) CrossRefGoogle Scholar
  10. 10.
    H. Kogelnik: Bell. Syst. Tech. J. 48, 2909 (1969) Google Scholar
  11. 11.
    A.J. Fox: J. Appl. Phys. 44, 254 (1973) Google Scholar
  12. 12.
    V.V. Gladkii, V.A. Kirikov, T.R. Volk: Physics of the Solid State 44, 365 (2002) CrossRefGoogle Scholar
  13. 13.
    K. Buse: Appl. Phys. B 64, 273 (1997) CrossRefGoogle Scholar
  14. 14.
    T. Granzow, U. Dörfler, T. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, W. Kleemann: Europhys. Lett. 57, 597 (2002) CrossRefGoogle Scholar
  15. 15.
    V.M. Fridkin: Photoferroelectrics (Springer-Verlag, Berlin, 1979) Google Scholar
  16. 16.
    M.E. Lines, A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 2001) Google Scholar
  17. 17.
    T. Granzow, T. Woike, M. Wöhlecke, M. Imlau, W. Kleemann: Phys. Rev. Lett. 89, 127601 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • U. Dörfler
    • 1
  • T. Granzow
    • 1
  • Th. Woike
    • 1
  • M. Wöhlecke
    • 2
  • R. Pankrath
    • 2
  • M. Imlau
    • 2
  1. 1.Institut für Mineralogie und GeochemieUniversität zu KölnKölnGermany
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations