Advertisement

Applied Physics B

, Volume 77, Issue 8, pp 789–796 | Cite as

How to realize a universal quantum gate with trapped ions

  • F. Schmidt-KalerEmail author
  • H. Häffner
  • S. Gulde
  • M. Riebe
  • G.P.T. Lancaster
  • T. Deuschle
  • C. Becher
  • W. Hänsel
  • J. Eschner
  • C.F. Roos
  • R. Blatt
Article

Abstract

We report the realization of an elementary quantum processor based on a linear crystal of trapped ions. Each ion serves as a quantum bit (qubit) to store the quantum information in long lived electronic states. We present the realization of single-qubit and of universal two-qubit logic gates. The two-qubit operation relies on the coupling of the ions through their collective quantized motion. A detailed description of the setup and the methods is included.

Keywords

Rabi Frequency Rabi Oscillation Gate Operation Phase Gate Control Qubit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nielsen, I. Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  2. 2.
    P.W. Shor: SIAM J. Sci. Statist. Comput. 26, 1484 (1997), quant-phys/9508027 MathSciNetCrossRefGoogle Scholar
  3. 3.
    L.K. Grover: Phys. Rev. Lett. 79, 325 (1997). ADSCrossRefGoogle Scholar
  4. 4.
    E. Jané et al.: Quant. Inf. Comp. 3, 15 (2003). Google Scholar
  5. 5.
    P.W. Shor: Phys. Rev. A 52, 2493 (1995). ADSCrossRefGoogle Scholar
  6. 6.
    A. Steane: Proc. R. Soc. Lond. A 452, 2551 (1996). ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A Quantum Information Science and Technology Roadmapping Project by the Advanced Research and Development Activity (ARDA), http://qist.lanl.gov/Google Scholar
  8. 8.
    I. Cirac, P. Zoller: Phys. Rev. Lett. 74, 4714 (1995). CrossRefGoogle Scholar
  9. 9.
    M. Šašura, V. Bužek: J. Mod. Opt. 49, 1593 (2002) CrossRefGoogle Scholar
  10. 10.
    Decoherence: Theoretical, Experimental, and Conceptual Problems: Lecture Notes in Physics, ed. by Ph. Banchard, D. Giulini, E. Joos, C. Kiefer, I.O. Stammatescu (Springer 1998) Google Scholar
  11. 11.
    F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt: Nature 422, 408 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    K. Hayasaka, S. Urabe, M. Wantanabe: Jpn. J. Appl. Phys. 39 (2000) Google Scholar
  13. 13.
    G.P.T. Lancaster, H. Häffner, M.A. Wilson, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt: Appl. Phys. B 76, 805 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward: Appl. Phys. B 31, 97 (1983) ADSCrossRefGoogle Scholar
  15. 15.
    H. Dehmelt: Bull. Am. Phys. Soc. 20, 60 (1975) Google Scholar
  16. 16.
    N. Kjaergaard, L. Hornekaer, A.M. Thommesen, Z. Videsen, M. Drewsen: Appl. Phys. B 71, 207 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    D. Rotter: Diploma, Univ. Innsbruck (2003) Google Scholar
  18. 18.
    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst: Appl. Phys. B 73, 861 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    S.T. Gulde: PhD thesis, Univ. Innsbruck (2003) Google Scholar
  20. 20.
    H. Rohde, S.T. Gulde, C.F. Roos, P.A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt: J. Opt. B 3, 34 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    P.K. Gosh: Ion traps (Clarendon press, Oxford 1995) Google Scholar
  22. 22.
    H. Rohde: PhD thesis, Univ. Innsbruck (2001) Google Scholar
  23. 23.
    C. Roos: PhD thesis, Univ. Innsbruck (2000) Google Scholar
  24. 24.
    D.V.F. James: Appl. Phys. B 66, 181 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof: J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998) CrossRefGoogle Scholar
  26. 26.
    C. Roos, Th. Zeiger, H. Rohde, H.C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, R. Blatt: Phys. Rev. Lett. 83, 4713 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    S. Gulde, M. Riebe, G.P.T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I.L. Chuang, R. Blatt: Nature 421, 48 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    A. Steane, C.F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, R. Blatt: Phys. Rev. A 62, 042305 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    H. Häffner, S. Gulde, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt: Phys. Rev. Lett. 90, 143602 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    A.M. Childs, I.L. Chuang: Phys. Rev. A 63, 012306 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland: Phys. Rev. Lett. 75, 4714 (1995) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, C. Monroe: Science 404, 256 (2000) Google Scholar
  33. 33.
    F. Schmidt-Kaler, S. Gulde, M. Riebe, T. Deuschle, A. Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Häffner, R. Blatt, J. Phys. B: At. Mol. Opt. Phys. 36, 623 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    C.F. Roos, G.P.T. Lancaster, M. Riebe, H. Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt: quant-phys/0307210 (2003)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • F. Schmidt-Kaler
    • 1
    Email author
  • H. Häffner
    • 1
  • S. Gulde
    • 1
  • M. Riebe
    • 1
  • G.P.T. Lancaster
    • 1
  • T. Deuschle
    • 1
  • C. Becher
    • 1
  • W. Hänsel
    • 1
  • J. Eschner
    • 1
  • C.F. Roos
    • 1
  • R. Blatt
    • 1
  1. 1.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations