Advertisement

Applied Physics B

, Volume 77, Issue 8, pp 797–802 | Cite as

Time-resolved two-photon quantum interference

  • T. Legero
  • T. Wilk
  • A. KuhnEmail author
  • G. Rempe
Article

Abstract

The interference of two independent single-photon pulses impinging on a beam splitter is analysed in a generalised time-resolved manner. Different aspects of the phenomenon are elaborated using different representations of the single-photon wave packets, like the decomposition into single-frequency field modes or spatio-temporal modes matching the photonic wave packets. Both representations lead to equivalent results, and a photon-by-photon analysis reveals that the quantum-mechanical two-photon interference can be interpreted as a classical one-photon interference once a first photon is detected. A novel time-dependent quantum-beat effect is predicted if the interfering photons have different frequencies. The calculation also reveals that full two-photon fringe visibility can be achieved under almost any circumstances by applying a temporal filter to the signal.

Keywords

Wave Packet Beam Splitter Output Port Photon Detection Photon Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger: Nature 390, 575 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    D. Boschi, S. Branca, F. de Martini, L. Hardy, S. Popescu: Phys. Rev. Lett. 80, 1121 (1998) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Knill, R. Laflamme, G.J. Milburn: Nature 409, 46 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    For a review, see, e.g., D. Bouwmeester, A. Ekert, A. Zeilinger (Eds.): The Physics of Quantum Information (Springer, Berlin 2000) Google Scholar
  5. 5.
    C.K. Hong, Z.Y. Ou, L. Mandel: Phys. Rev. Lett. 59, 2044 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    For a detailed theoretical description, see, e.g., Z.Y. Ou: Phys. Rev. A 37, 1607 (1988); H. Fearn, R. Loudon: J. Opt. Soc. Am. B 6, 917 (1989) CrossRefGoogle Scholar
  7. 7.
    For an overview, see, e.g., L. Mandel: Rev. Mod. Phys. 71, 274 (1999), and references therein CrossRefGoogle Scholar
  8. 8.
    Z.Y. Ou, L. Mandel: Phys. Rev. Lett. 61, 54 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, N. Gisin: Phys. Rev. A 67, 022301 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    T.B. Pittman, J.D. Franson: Phys. Rev. Lett. 90, 240401 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    C. Santori, D. Fattal, J. Vučković, G.S. Solomon, Y. Yamamoto: Nature 419, 594 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    M. Zukowski, A. Zeilinger, H. Weinfurter: Ann. N.Y. Acad. Sci. 755, 91 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    J. Bylander, I. Robert-Philip, I. Abram: Eur. Phys. J. D 22, 295 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    A. Kuhn, M. Hennrich, G. Rempe: Phys. Rev. Lett. 89, 067901 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    A. Kuhn, G. Rempe: In: Experimental Quantum Computation and Information, Vol. 148, ed. by F. DeMartini, C. Monroe (IOS-Press, Amsterdam 2002) p. 37 Google Scholar
  16. 16.
    A. Kuhn, M. Hennrich, G. Rempe: In: Quantum Information Processing, ed. by T. Beth, G. Leuchs (Wiley-VCH, Berlin 2003) p. 182 Google Scholar
  17. 17.
    A.M. Steinberg, P.G. Kwiat, R.Y. Chiao: Phys. Rev. A 45, 6659 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    L. Mandel, E. Wolf: Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge 1995)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations