Applied Physics B

, Volume 77, Issue 8, pp 797–802 | Cite as

Time-resolved two-photon quantum interference



The interference of two independent single-photon pulses impinging on a beam splitter is analysed in a generalised time-resolved manner. Different aspects of the phenomenon are elaborated using different representations of the single-photon wave packets, like the decomposition into single-frequency field modes or spatio-temporal modes matching the photonic wave packets. Both representations lead to equivalent results, and a photon-by-photon analysis reveals that the quantum-mechanical two-photon interference can be interpreted as a classical one-photon interference once a first photon is detected. A novel time-dependent quantum-beat effect is predicted if the interfering photons have different frequencies. The calculation also reveals that full two-photon fringe visibility can be achieved under almost any circumstances by applying a temporal filter to the signal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger: Nature 390, 575 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    D. Boschi, S. Branca, F. de Martini, L. Hardy, S. Popescu: Phys. Rev. Lett. 80, 1121 (1998) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Knill, R. Laflamme, G.J. Milburn: Nature 409, 46 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    For a review, see, e.g., D. Bouwmeester, A. Ekert, A. Zeilinger (Eds.): The Physics of Quantum Information (Springer, Berlin 2000) Google Scholar
  5. 5.
    C.K. Hong, Z.Y. Ou, L. Mandel: Phys. Rev. Lett. 59, 2044 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    For a detailed theoretical description, see, e.g., Z.Y. Ou: Phys. Rev. A 37, 1607 (1988); H. Fearn, R. Loudon: J. Opt. Soc. Am. B 6, 917 (1989) CrossRefGoogle Scholar
  7. 7.
    For an overview, see, e.g., L. Mandel: Rev. Mod. Phys. 71, 274 (1999), and references therein CrossRefGoogle Scholar
  8. 8.
    Z.Y. Ou, L. Mandel: Phys. Rev. Lett. 61, 54 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, N. Gisin: Phys. Rev. A 67, 022301 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    T.B. Pittman, J.D. Franson: Phys. Rev. Lett. 90, 240401 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    C. Santori, D. Fattal, J. Vučković, G.S. Solomon, Y. Yamamoto: Nature 419, 594 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    M. Zukowski, A. Zeilinger, H. Weinfurter: Ann. N.Y. Acad. Sci. 755, 91 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    J. Bylander, I. Robert-Philip, I. Abram: Eur. Phys. J. D 22, 295 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    A. Kuhn, M. Hennrich, G. Rempe: Phys. Rev. Lett. 89, 067901 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    A. Kuhn, G. Rempe: In: Experimental Quantum Computation and Information, Vol. 148, ed. by F. DeMartini, C. Monroe (IOS-Press, Amsterdam 2002) p. 37 Google Scholar
  16. 16.
    A. Kuhn, M. Hennrich, G. Rempe: In: Quantum Information Processing, ed. by T. Beth, G. Leuchs (Wiley-VCH, Berlin 2003) p. 182 Google Scholar
  17. 17.
    A.M. Steinberg, P.G. Kwiat, R.Y. Chiao: Phys. Rev. A 45, 6659 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    L. Mandel, E. Wolf: Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge 1995)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations