Applied Physics B

, Volume 78, Issue 1, pp 25–30

Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard

  • A. Amy-Klein
  • A. Goncharov
  • C. Daussy
  • C. Grain
  • O. Lopez
  • G. Santarelli
  • C. Chardonnet
Article

Abstract

A new frequency chain was demonstrated to measure an optical frequency standard based on a rovibrational molecular transition in the 28-THz spectral region accessible to a CO2 laser. It uses a femtosecond-laser frequency comb generator and two laser diodes at 852 nm and 788 nm as intermediate oscillators, with their frequency difference phase locked to the CO2 laser. The rf repetition rate of the femtosecond laser was compared with a 100-MHz signal from a hydrogen maser, located at BNM-SYRTE. The 100-MHz signal is transmitted by amplitude modulation of a 1.55-μm laser diode through a 43-km telecommunication optical fibre. As a first example, the absolute measurement of a saturation line of OsO4 in the vicinity of the P(16) laser line of CO2 is reported with a relative uncertainty of 10-12, limited by the CO2/OsO4 frequency day-to-day reproducibility. The current limit on the stability of the frequency measurement is 4×10-13 at 1 s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch: Phys. Rev. Lett. 82, 3568 (1999) CrossRefGoogle Scholar
  2. 2.
    S.T. Cundiff, J. Ye, J.L. Hall: Rev. Sci. Instrum. 72, 3749 (2001) Google Scholar
  3. 3.
    J. Reichert, R. Holzwarth, T. Udem, T.W. Hänsch: Opt. Comm. 172, 59 (1999) CrossRefGoogle Scholar
  4. 4.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff: Science 288, 635 (2000) CrossRefGoogle Scholar
  5. 5.
    T.J. Quinn: Metrologia 36, 211 (1999) CrossRefGoogle Scholar
  6. 6.
    V. Bernard, G. Nogues, Ch. Daussy, L.F. Constantin, Ch. Chardonnet: Metrologia 34, 314 (1997) CrossRefGoogle Scholar
  7. 7.
    V. Bernard, C. Daussy, G. Nogues, L. Constantin, P.E. Durand, A. Amy-Klein, A. van Lerberghe, Ch. Chardonnet: IEEE J. Quant. Electron. QE-33 , 1282 (1997) Google Scholar
  8. 8.
    O. Acef: IEEE Trans. Instrum. Meas. 46, 162 (1997) Google Scholar
  9. 9.
    G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A.G. Mann, S. Chang, A.N. Luiten, C. Salomon: Phys. Rev. Lett. 82, 4619 (1999) CrossRefGoogle Scholar
  10. 10.
    B. de Beauvoir, F. Nez, L. Hilico, L. Julien, F. Biraben, B. Cagnac, J.-J. Zon dy, D. Touahri, O. Acef, A. Clairon: Eur. Phys. J. D 1, 227 (1998) CrossRefGoogle Scholar
  11. 11.
    K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, N. Kawano: IEEE Trans. Instrum. Meas. 49, 19 (2000) CrossRefGoogle Scholar
  12. 12.
    S.N. Bagayev, S.V. Chepurov, V.M. Klementyev, D.B. Kolker, S.A. Kuznetsov, Yu.A. Matyugin, V.S. Pivtsov, V.F. Zakharyash: Laser Phys. 11, 1094 (2001) Google Scholar
  13. 13.
    D. Touahri, O. Acef, J.-J. Zondy: Opt. Lett. 21, 213 (1996) Google Scholar
  14. 14.
    Ch. Chardonnet, Ch.J. Bordé: J. Mol. Spectrosc. 167, 71 (1994) CrossRefGoogle Scholar
  15. 15.
    O. Acef, F. Michaud, G.V. Rovera: IEEE Trans. Instrum. Meas. 48, 567 (1999) CrossRefGoogle Scholar
  16. 16.
    A. Shelkovnikov, Ch. Grain, C.T. Nguyen, R.J. Butcher, A. Amy-Klein, Ch. Chardonnet: Appl. Phys. B 73, 93 (2001) Google Scholar
  17. 17.
    A. Clairon, A. van Lerberghe, C. Salomon, M. Ouhayoun, Ch.J. Bordé: Opt. Commun. 35, 368 (1980) CrossRefGoogle Scholar
  18. 18.
    O. Acef: Opt. Commun. 134, 479 (1997) CrossRefGoogle Scholar
  19. 19.
    V.A. Alekseev, D.D. Krylova, O. Acef: Opt. Commun. 174, 163 (2000) CrossRefGoogle Scholar
  20. 20.
    P.V. Pokasov, R. Holzwarth, Th. Udem, M. Zimmerman, J. Reichert, M. Niering, T.W. Hänsch, A.K. Dmitriyev, S.N. Bagayev, P. Lemonde, G. Santarelli, P. Laurent, M. Abgrall, A. Clairon: in Proc. 6th Frequency Standards and Metrology Symp., ed. by P. Gill (World Scientific, Singapore 2002) p. 510 Google Scholar
  21. 21.
    J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, T.W. Hänsch: Phys. Rev. Lett. 84, 3232 (2000) CrossRefGoogle Scholar
  22. 22.
    T.A. Birks, J.C. Knight, P.St.J. Russel: Opt. Lett. 22, 961 (1997) Google Scholar
  23. 23.
    J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 25 (2000) Google Scholar
  24. 24.
    P. Wolf, S. Bize, A. Clairon, A.N. Luiten, G. Santarelli, M.E. Tobar: Phys. Rev. Lett. 6, 9006 (2003) Google Scholar
  25. 25.
    C. Grain, A. Shelkovnikov, A. Amy-Klein, R.J. Butcher, C. Chardonnet: IEEE J. Quant. Electron. QE-38, 1406 (2002) Google Scholar
  26. 26.
    S.G. Karshenboim: Can. J. Phys. 78, 639 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Amy-Klein
    • 1
  • A. Goncharov
    • 1
  • C. Daussy
    • 1
  • C. Grain
    • 1
  • O. Lopez
    • 1
  • G. Santarelli
    • 2
  • C. Chardonnet
    • 1
  1. 1.LPL, Laboratoire de Physique des Lasers, UMR 7538 CNRSUniversité Paris 13VilletaneuseFrance
  2. 2.BNM-SYRTE, UMR 8630 CNRSObservatoire de ParisParisFrance

Personalised recommendations