Applied Physics B

, Volume 78, Issue 2, pp 137–144

Grating enhanced external cavity diode laser

  • A. Wicht
  • M. Rudolf
  • P. Huke
  • R.-H. Rinkleff
  • K. Danzmann
Article

Abstract

We describe a concept for diode lasers with optical feedback. It is based on the combination of two different diode laser concepts: the diode laser with (i) feedback from a grating and (ii) resonant optical feedback from a separate cavity. The goal of our work is to unite the excellent tunability and well known reliability of grating diode lasers with the narrow emission linewidth of diode lasers with resonant optical feedback. Our theoretical description shows that a proper cavity design is essential for this concept. It also provides the means to optimize the cavity geometry. Our setup is based on an AR-coated laser diode emitting at 852 nm. It achieves an overall tuning range of 36.4 nm and a continuous tuning range of 45.1 GHz. A beat note measurement with a diode laser with resonant optical feedback demonstrates a short-term linewidth below 60 kHz. Continuous tuning ranges on the order of nanometers and linewidth on the order of kHz seem feasible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.E. Wieman, L. Hollberg: Rev. Sci. Instrum. 62, l (1991) Google Scholar
  2. 2.
    R. Fox, C. Gates, L. Hollberg: In Cavity-enhanced spectroscopy, ed. by R. van Zee, J. Looney (Academic Press, Amsterdam 2002) pp. 1–46 Google Scholar
  3. 3.
    W.P. Risk, T. Gosnell, A.V. Nurmikko: Compact Blue-Green Lasers (Cambridge University Press, 2003) Google Scholar
  4. 4.
    R. Iffländer: Solid State Lasers for Material Processing (Springer Verlag, Berlin 2001) Google Scholar
  5. 5.
    C.J. Myatt, N.R. Newbury, C.E. Wieman: Opt. Lett. 18, 649 (1993) Google Scholar
  6. 6.
    D. Wandt, M. Laschek, K. Przyklenk, A. Tünnermann, H. Welling: Opt. Commun. 130, 81 (1996) CrossRefGoogle Scholar
  7. 7.
    A. Wolf, B. Bodermann, H.R. Telle: Opt. Lett. 25, 1098 (2000) Google Scholar
  8. 8.
    M.W. Fleming, A. Mooradian: IEEE J. Quantum Electron. QE-17, 44 (1981) Google Scholar
  9. 9.
    B. Dahmani, L. Hollberg, R. Drullinger: Opt. Lett. 12, 876 (1987) Google Scholar
  10. 10.
    K. Hayasaka: Opt. Commun. 206, 401 (2002) CrossRefGoogle Scholar
  11. 11.
    H. Patrick, C.E. Wieman: Rev. Sci. Instrum. 62, 2593 (1991) CrossRefGoogle Scholar
  12. 12.
    G. Ewald: Staatsexamensarbeit, Universität Mainz (1999); K.-M. Knaak: PhD thesis, Universität Heidelberg (2000) Google Scholar
  13. 13.
    C.H. Henry: IEEE J. Quantum Electron. QE-18, 259 (1982) Google Scholar
  14. 14.
    É.M. Belenov, V.L. Velichanskiĭ, A.S. Zibrov, V.V. Nikitin, V.A. Sautenkov, A.V. Uskov: Sov. J. Quantum Electron. 13, 792 (1983) Google Scholar
  15. 15.
    H. Kogelnik, T. Li: Appl. Optics 5, 1550 (1966) Google Scholar
  16. 16.
    A.E. Siegman: Lasers (University Science Books, Sausalito, CA 1986) Google Scholar
  17. 17.
    Sacher Lasertechnik, private commumcation Google Scholar
  18. 18.
    P. Buch, P. Kohns: IEEE J. Quantum Electron QE-27, 1863 (1991)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Wicht
    • 1
  • M. Rudolf
    • 2
  • P. Huke
    • 2
  • R.-H. Rinkleff
    • 2
  • K. Danzmann
    • 2
    • 3
  1. 1.Institut für ExperimentalphysikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Institut für Atom- und MolekülphysikUniversität HannoverHannoverGermany
  3. 3.Max-Planck-Institut für GravitationsphysikHannoverGermany

Personalised recommendations