Applied Physics B

, Volume 77, Issue 4, pp 381–385 | Cite as

Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy

Rapid communication

Abstract

An ambient trace-ammonia sensor that uses resonant photoacoustic spectroscopy and a line-tunable CO2 laser has been developed. This system achieves a 1σ replicate precision of 32 parts-per-trillion (ppt) with an averaging time of 5 s and a total measurement time of 40 s. This 32-ppt precision corresponds to a minimum detectable fractional absorbance of 8.8×10-9, a minimum detectable absorption coefficient of 9.6×10-10 cm-1, and a minimum path-length-normalized detectivity of 1.1×10-8 W cm-1/Hz1/2. Background interference from CO2, H2O, and cell-window absorption were subtracted by switching to a neighboring off-resonance laser wavelength .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guide for the Selection of Chemical Agent and Toxic Industrial Material Detection Equipment for Emergency First Responders (National Institute of Justice Guide 100–00, Vol. 1, 2000) Google Scholar
  2. 2.
    J.H. Seinfeld, S.N. Pandis: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley, New York 1998) Google Scholar
  3. 3.
    Ad Hoc Committee on Air Emissions from Animal Feeding Operations, Committee on Animal Nutrition, National Research Council: Air Emissions from Animal Feeding Operations: Current Knowledge, Future Needs, Final Report (2003) Google Scholar
  4. 4.
    Iowa State University and the University of Iowa Study Group: Iowa Concentrated Animal Feeding Operations Air Quality Study, Final Report (2002) Google Scholar
  5. 5.
    U.S. Environmental Protection Agency, Emission Standards Division, Office of Air Quality Planning and Standards: Emissions From Animal Feeding Operations, Draft Report, EPA Contract No. 68-D6–0011 (2001) Google Scholar
  6. 6.
    M.B. Pushkarsky, M.E. Webber, O. Baghdassarian, L.R. Narasimhan, C.K.N. Patel: Appl. Phys. B 75, 391 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    P. Hess (Ed.): Topics in Current Physics: Photoacoustic, Photothermal and Photochemical Processes in Gases (Springer-Verlag 1989) Google Scholar
  8. 8.
    P. Repond, M.W. Sigrist: Appl. Opt. 35, 4065 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    A. Miklos, P. Hess, Z. Bozoki: Rev. Sci. Instrum. 72, 1937 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    S. Schafer, A. Miklos, P. Hess: Appl. Opt. 36, 3202 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    M.E. Webber, M. Pushkarsky, C.K.N. Patel: Appl. Opt. 42, 2119 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    J. Henningsen, N. Melander: Appl. Opt. 36, 7037 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    A. Schmohl, A. Miklos, P. Hess: Appl. Opt. 41, 1815 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    L.S. Rothmann, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattsin, K. Yoshino, K.V. Chance, K.W. Juck, L.R. Brown, V. Nemtchechin, P. Varanasi: J. Quantum Spectrosc. Radiat. Transfer 60, 710 (1998) CrossRefGoogle Scholar
  15. 15.
    S.W. Sharpe, R.L. Sams, T.J. Johnson, P.M. Chu, G.C. Rhoderick, F.R. Guenther: Proc. SPIE 4577, 12 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    M. Avery Owens, C.C. Davis, R.R. Dickerson: Anal. Chem. 71, 1391 (1999) CrossRefGoogle Scholar
  17. 17.
    Y.H. Pao (Ed.): Optoacoustic Spectroscopy and Detection (Academic Press, New York 1977) Google Scholar
  18. 18.
    G.L. Loper, M.A. O’Neill, J.A. Gelbwachs: Appl. Opt. 22, 3701 (1983) ADSCrossRefGoogle Scholar
  19. 19.
    L.B. Kreuzer, N.D. Kenyon, C.K.N. Patel: Science 177, 347 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Pranalytica, Inc. Santa MonicaUSA

Personalised recommendations