Applied Physics B

, Volume 77, Issue 5, pp 497–503

Optimization of quasi-phase-matched non-linear frequency conversion for diffusion bonding applications

Regular Paper

Abstract

The diffusion bonding technique has many applications in non-linear frequency-conversion processes. Unfortunately, when used for bonding periodically poled crystals, the periodic patterns have to be very precisely matched for efficient conversion. We investigated theoretically and experimentally this effect, in two configurations of increasing the length or the thickness of a crystal. We found that the sensitivity to the relative periodic domain match is much more severe for the case of increasing the crystal length with respect to increasing its thickness. Furthermore, even for symmetric pump illumination with respect to the interface between two crystals, an asymmetric intensity distribution may be obtained in the second harmonic. We have experimentally measured the second harmonic power modulation caused by varying the relative domain match at the interface between two attached, but unbonded crystals. A novel configuration for the domain patterns is proposed, which limits the degradation of the generated light caused by the domain mismatch.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Rosenman, A. Skaliar, A. Arie: Ferroelectr. Rev. 1, 263 (1999) Google Scholar
  2. 2.
    J. Hellstrom, V. Pasiskevicius, F. Laurell, H. Karlsson: Opt. Lett. 25, 174 (2000) Google Scholar
  3. 3.
    H. Karlsson, M. Olson, G. Arvidsson, F. Laurell, U. Bader, A. Borsutzky, R. Wallenstein, S. Wickstrom, S. Gustafsson: Opt. Lett. 24, 330 (1999) Google Scholar
  4. 4.
    L.E. Myers, T.P. Grayson, W.R. Rosenberg, M.D. Nelson, V. Dominic, M.M. Fejer, R.L. Byer: In: OSA Tech. Dig. Conf. Lasers Electro-optics (1996) p. 9 Google Scholar
  5. 5.
    L.M. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg: SPIE 2700, 216 (1997). Although this is the longest commercial bulk PPLN crystal, a PPLN length of up to 86 mm had been achieved (see for example G. Schreiber et al.: Appl. Phys. B 73, 501 (2001)) Google Scholar
  6. 6.
    G. Rosenman, A. Skliar: Ferroelectrics 221(1–4), 129 (1999) Google Scholar
  7. 7.
    G. Imeshev, M. Proctor, M.M. Fejer: Opt. Lett. 23, 165 (1998) Google Scholar
  8. 8.
    J.M. Yarborough, J. Falk, C.B. Hitz: Appl. Phys. Lett. 18, 70 (1971) Google Scholar
  9. 9.
    G.C. Bhar, U. Chatterjee, P. Datta: Appl. Phys. B 51, 317 (1990) Google Scholar
  10. 10.
    K. Eda, M. Sugimoto, Y. Tomita: Appl. Phys. Lett. 66, 827 (1995) CrossRefGoogle Scholar
  11. 11.
    Y. Tomita, M. Sugimoto, K. Eda: Appl. Phys. Lett. 66, 1484 (1995) CrossRefGoogle Scholar
  12. 12.
    M. Missey, V. Dominic, L.E. Myers, C. Littell, R.C. Eckardt: OSA TOPS 10 (Adv. Solid State Lasers), 247 (1997) Google Scholar
  13. 13.
    M. Missey, V. Dominic, L.E. Myers, R.C. Eckardt: Opt. Lett. 23, 664 (1998) Google Scholar
  14. 14.
    J.J. Zondy, M. Abed, S. Khodja: SPIE 2700, 66 (1996) Google Scholar
  15. 15.
    G. Rosenman, A. Skliar, D. Eger, M. Oron, M. Katz: Appl. Phys. Lett. 73, 3650 (1998) CrossRefGoogle Scholar
  16. 16.
    A. Sennaroglu, A. Askar, F.M. Atay: J. Opt. Soc. Am. B 14, 356 (1997) Google Scholar
  17. 17.
    A. Douillet, J.J. Zondy, A. Yelisseyev, S. Lobanov, L. Isaenko: J. Opt. Soc. Am. B 16, 1481 (1999) Google Scholar
  18. 18.
    D.A. Kleinmann, R.C. Miller: Phys. Rev. 148, 302 (1966) CrossRefGoogle Scholar
  19. 19.
    G.D. Boyd, D.A. Kleinmann: Appl. Phys. 39, 3596 (1968) Google Scholar
  20. 20.
    V. Berger: Phys. Rev. Lett. 81, 4136 (1998) CrossRefGoogle Scholar
  21. 21.
    B.E.A. Saleh, M.C. Teich: Fundamental of Photonics (Wiley, New York 1991) Google Scholar
  22. 22.
    D. Marcuse: Theory of Dielectric Optical Waveguides (Academic, San Diego 1991) Google Scholar
  23. 23.
    M.D. Feit, J.A. Fleck: Appl. Opt. 17, 3990 (1978) Google Scholar
  24. 24.
    A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger: Opt. Commun. 142, 265 (1997) CrossRefGoogle Scholar
  25. 25.
    R.C. Miller: Appl. Phys. Lett. 5, 17 (1964)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Electrical Engineering – Physical Electronics, Faculty of EngineeringTel Aviv UniversityTel-AvivIsrael

Personalised recommendations