Applied Physics B

, Volume 77, Issue 1, pp 25–30 | Cite as

A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining

  • A.P. Joglekar
  • H. Liu
  • G.J. Spooner
  • E. Meyhöfer
  • G. Mourou
  • A.J. Hunt
Regular Paper

Abstract

A remarkable feature of material damage induced by short-pulsed lasers is that the energy threshold becomes deterministic for sub-picosecond pulses. This effect, coupled with the advent of kHz and higher repetition rate chirped pulse amplification systems, has opened the field of femtosecond machining. Yet the mechanism of optical breakdown remains unclear. By examining the damage threshold as a function of polarization, we find that, contrary to established belief, multiphoton ionization plays an insignificant role in optical breakdown. The polarization independence, combined with the observed precise and uniform dielectric breakdown threshold even for nanometer-scale features, leads us to conclude that the fundamental mechanism is ‘self-terminated’ Zener-impact ionization, and that the deterministic and uniform damage threshold throughout the sample threshold stems from the uniform valence-electron density found in good-quality optical materials. By systematically exploring optical breakdown near threshold, we find that we can consistently machine features as small as 20 nm, demonstrating great promise for applications ranging from Micro ElectroMechanical Systems (MEMS) construction and microelectronics, to targeted disruption of cellular structures and genetic material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Du, X. Liu, G. Korn, J. Squier, G. Mourou: Appl. Phys. Lett. 64, 3071 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    E.N. Glezer, M. Milosavljevic, L. Huang, R.L. Finlay, H.H. Her, J.P. Callan, E. Mazur: ed. by P.F. Barbara (Springer, New York 1996) p. 157 Google Scholar
  3. 3.
    W. Kautek, J. Krueger: Mater. Sci. Forum 173174, 17 (1995) Google Scholar
  4. 4.
    X. Liu, D. Du, G. Mourou: IEEE J. Quantum Electron. QE-33, 1706 (1997) Google Scholar
  5. 5.
    C. Momma, B.N. Chichkov, S. Nolte, F. Alvensleben, A. Tunnermann, H. Welling, B. Wellengehausen: Opt. Commun. 129, 134 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    S. Nakamura, T. Okamoto, H. Kumagai, K. Midorikawa, M. Obara, K. Toyoda: Appl. Phys. Lett. 65, 1850 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry: Phys. Rev. Lett. 74, 2248 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    D. Du, J. Squier, R. Kurtz, V. Elner, X. Liu, G. Gutmann, G. Mourou: ed. by P.F. Barbara (Springer, New York 1995) p. 254 Google Scholar
  9. 9.
    P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, G. Mourou: Opt. Commun. 114, 106 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    K. Venkatakrishnan, B. Tran, P. Stanley, N. Sivakumar: J. Appl. Phys. 92, 1604 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    K. Konig, I. Riemann, W. Fritzsche: Opt. Lett. 26, 819 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    N. Bloembergen: IEEE J. Quantum Electron. QE-10, 375 (1974) Google Scholar
  13. 13.
    J. Squier, F. Salin, G. Mourou, H.H. Her: Opt. Lett. 16, 324 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    K.K. Thornber: J. Appl. Phys. 52, 279 (1981) ADSCrossRefGoogle Scholar
  15. 15.
    M. Lenzner, S. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz: Phys. Rev. Lett. 80, 4076 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou: Phys. Rev. Lett. 82, 3883 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    D. Du: Doctoral Thesis, Physics, University of Michigan (1996) Google Scholar
  18. 18.
    L. Lompré, G. Mainfray, C. Manus, J. Thebault: Phys. Rev. A 15, 1604 (1977) ADSCrossRefGoogle Scholar
  19. 19.
    C. Schaffer, A. Brodeur, J. Garcia, E. Mazur: Opt. Lett. 26, 93 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    D. Du, X. Liu, G. Mourou: Appl. Phys. B 63, 617 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon: Phys. Rev. B 61, 437 (2000) CrossRefGoogle Scholar
  22. 22.
    L. Keldysh: Sov. Phys. JETP 20, 1307 (1965) MathSciNetGoogle Scholar
  23. 23.
    J. Fritzsche: J. Non-Cryst. Solids 6, 49 (1971) ADSCrossRefGoogle Scholar
  24. 24.
    G.J. Brouhard, H.T. Schek, A.J. Hunt: IEEE Trans. Biomed. Eng. 50, 121 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A.P. Joglekar
    • 1
  • H. Liu
    • 2
  • G.J. Spooner
    • 2
  • E. Meyhöfer
    • 3
  • G. Mourou
    • 2
  • A.J. Hunt
    • 4
  1. 1.300Ann ArborUSA
  2. 2.ISTAnn ArborUSA
  3. 3.3130 GG Brown Lab/2125Ann ArborUSA
  4. 4.2131 GerstackerAnn ArborUSA

Personalised recommendations