Advertisement

Applied Physics B

, Volume 77, Issue 1, pp 101–108 | Cite as

Cavity ring-down measurements in flames using a single-mode tunable laser system

  • A. Schocker
  • A. Brockhinke
  • K. Bultitude
  • P. Ewart
Regular Paper

Abstract

High-resolution pulsed cavity ring-down spectroscopy (CRDS) of OH in a flame has been demonstrated using a novel single-mode tunable laser (STL). This system operates by pulse amplification of the output of a single-mode diode laser in a modeless dye laser. Ring-down curves obtained using the narrow-bandwidth STL, for both strong and weak transitions, are shown to be well fitted by single exponentials. These results are demonstrated to be in direct contrast with those obtained using a standard dye laser, for which the bandwidth is comparable to the transition linewidths and ring-down curves require multi-exponential fits.

Accurate lineshape analysis is thus made possible using the STL, allowing the temperature to be derived from the measured Doppler width. The resulting measurement is in good agreement with the value derived from a Boltzmann plot of data obtained using a conventional laser in a similar flame. The advantages of using the STL system for quantitative CRDS measurements are discussed, together with a suggestion for quantitative measurements of the ASE content of narrowband lasers using CRDS.

Keywords

Laser Linewidth Boltzmann Plot Standard Laser Diode Laser Beam Absorption Lineshapes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kohse-Höinghaus, J.B. Jeffries (Eds.): Applied Combustion Diagnostics (Taylor and Francis, New York 2002) Google Scholar
  2. 2.
    K. Kohse-Höinghaus: Prog. Energy Combust. Sci. 20, 203 (1994) CrossRefGoogle Scholar
  3. 3.
    A. Brockhinke, K. Kohse-Höinghaus: Faraday Discuss. 119, 275 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    A. Brockhinke, A. Bülter, J.C. Rolon, K. Kohse-Höinghaus: Appl. Phys. B 72, 491 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    M.W. Renfro, A. Chaturvedy, N.M. Laurendeau: Combust. Sci. Technol. 169, 25 (2001) CrossRefGoogle Scholar
  6. 6.
    A. O’Keefe, D.A.G. Deacon: Rev. Sci. Instrum. 59, 2544 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Scherer, J.B. Paul, A. O’Keefe, R.J. Saykally: Chem. Rev. 97, 25 (1997) CrossRefGoogle Scholar
  8. 8.
    K.W. Busch, M.A. Busch (Eds.) Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique (Am. Chem. Soc., Washington, D.C. 1999) Google Scholar
  9. 9.
    G. Berden, R. Peeters, G. Meijer: Int. Rev. Phys. Chem. 19, 565 (2000) CrossRefGoogle Scholar
  10. 10.
    M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold: J. Chem. Soc., Faraday Trans. 94, 337 (1998) CrossRefGoogle Scholar
  11. 11.
    P. Zalicki, Y. Ma, R.N. Zare, E.H. Wahl, J.R. Dadamio, T.G. Owano, C.H. Kruger: Chem. Phys. Lett. 234, 269 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, J.J. Scherer: Combust. Flame 126, 1725 (2001) CrossRefGoogle Scholar
  13. 13.
    J.J. Scherer, D.J. Rakestraw: Chem. Phys. Lett. 265, 169 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    K. Kohse-Höinghaus, M. Kamphus, G. Gonzalez Alatorre, B. Atakan, A. Schocker, A. Brockhinke: C. R. Acad. Sci., Ser. IV 2, 973 (2001) Google Scholar
  15. 15.
    J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J.J. Rakestraw: J. Chem. Phys. 107, 6196 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Scherer, D. Voelkel, D.J. Rakestraw: Appl. Phys. B. 64, 699 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    A. McIlroy: Chem. Phys. Lett. 296, 151 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus: In: Spring 2000 Meeting of the Western States Section of the Combustion Institute at Colorado School of Mines, Golden, CO, USA, 13–14 March 2000, WSS/CI paper 00S-3 Google Scholar
  19. 19.
    I. Derzy, V. Lozovsky, S. Cheskis: Chem. Phys. Lett. 306, 319 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    A. Staicu, R.L. Stolk, J.J. ter Meulen: J. Appl. Phys. 91, 969 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    S. Cheskis, I. Derzy, V.A. Lozovsky, A. Kachanov, D. Romanini: Appl. Phys. B. 66, 377 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    R. Peeters, G. Berden, G. Meijer: Appl. Phys. B. 73, 65 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley: Appl. Phys. B 73, 731 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    L. Pillier, C. Moreau, X. Mercier, J.F. Pauwels, P. Desgroux: Appl. Phys. B 74, 427 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    R. Evertsen, A. Staicu, N. Dam, A. Van Vliet, J.J. ter Meulen: Appl. Phys. B 74, 465 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    P. Zalicki, R.N. Zare: J. Chem. Phys. 102, 2708 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    R.T. Jongma, M.G.H. Boogaarts, I. Holleman, G. Meijer: Rev. Sci. Instrum. 66, 2821 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    J.T. Hodges, J.P. Looney, R.D. van Zee: J. Chem. Phys. 105, 10278 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    L. Lehr, P. Hering: IEEE J. Quantum Electron. QE-33, 1465 (1997) Google Scholar
  30. 30.
    J.T. Hodges, J.P. Looney, R.D. van Zee: Appl. Opt. 35, 4112 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Newman, I.C. Lane: J. Chem. Phys. 110, 10749 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    I. Labazan, S. Rudic, S. Milosevic: Chem. Phys. Lett. 320, 613 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    S.C. Xu, D.X. Dai, G. Sha, C. Zhang: Chem. Phys. Lett. 303, 171 (1999) ADSCrossRefGoogle Scholar
  34. 34.
    X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux: Combust. Flame 125, 656 (2001) CrossRefGoogle Scholar
  35. 35.
    A.P. Yalin, R.N. Zare: Laser Phys. 12, 1065 (2002) Google Scholar
  36. 36.
    M.J. New, P. Ewart: Opt. Commun. 123, 139 (1996) ADSCrossRefGoogle Scholar
  37. 37.
    K. Bultitude: D.Phil. Thesis, Oxford University (2003) Google Scholar
  38. 38.
    P. Ewart: Opt. Commun. 55, 124 (1985) ADSCrossRefGoogle Scholar
  39. 39.
    I. Shoshan, N.N. Danon, U.P. Oppenheim: J. Appl. Phys. A 48, 4495 (1977) ADSCrossRefGoogle Scholar
  40. 40.
    M.G. Littman, H.J. Metcalf: Appl. Opt. 17, 2224 (1978) ADSCrossRefGoogle Scholar
  41. 41.
    K. Bultitude, P. Ewart: manuscript in submission Google Scholar
  42. 42.
    X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux: Chem. Phys. Lett. 299, 75 (1999) ADSCrossRefGoogle Scholar
  43. 43.
    G. Meijer, M.G.H. Boogaarts, R.T. Jongma, D.H. Parker: Chem. Phys. Lett. 217, 112 (1994) ADSCrossRefGoogle Scholar
  44. 44.
    S. Prucker, W. Meier, W. Stricker: Rev. Sci. Instrum. 65, 2908 (1994) ADSCrossRefGoogle Scholar
  45. 45.
    W.H. Press, B.F. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recepies in C (Cambridge University Press, Cambridge 1998) Google Scholar
  46. 46.
    E.C. Rea Jr., A.Y. Chang, R.K. Hanson: J. Quantum Spectrosc. Radiat. Transfer 41, 29 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Schocker
    • 1
  • A. Brockhinke
    • 1
  • K. Bultitude
    • 2
  • P. Ewart
    • 2
  1. 1.Physikalische Chemie I Universität BielefeldBielefeldGermany
  2. 2.Clarendon LaboratoryOxford UniversityOxfordUnited Kingdom

Personalised recommendations