Advertisement

Applied Physics B

, Volume 76, Issue 8, pp 859–867 | Cite as

Simultaneous determination of the temperature and density of rubidium vapor

  • D. Aumiler
  • T. Ban
  • R. Beuc
  • G. Pichler
Regular Paper

Abstract

We propose a new method for the simultaneous determination of the temperature and atom number density in rubidium vapor. The method is based on the comparison of theoretical simulations of the self-broadened absorption profiles of rubidium resonance lines with the measured profiles. Absorption measurements performed in rubidium vapor indicate that in the spectral region around resonance lines (760–835 nm), excellent agreement between theoretical and experimental absorption profiles can be achieved. In the temperature interval 500–700 K, the simultaneous determination of the atom number density and temperature of rubidium vapor is possible. We have applied the present method to nearly homogeneous and inhomogeneous rubidium vapors generated in a sapphire cell.

Keywords

Simultaneous Determination Rubidium Resonance Line Internuclear Distance Potential Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Demtröder: Laser Spectroscopy: Basics Concepts and Instrumentation (Springer, New York 2002) Google Scholar
  2. 2.
    P.W. Wang, A. Gallagher, J. Cooper: Phys. Rev. A 56, 1598 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Nesmeyanov: Vapor Pressures of Chemical Elements (Elsevier, New York 1963) Google Scholar
  4. 4.
    A. Gallagher, E.L. Lewis: J. Opt. Soc. Am. 63, 864 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    A.C.G. Mitchell, M.W. Zemansky: Resonance Radiation and Excited Atoms (Cambridge University Press, Cambridge 1961) Google Scholar
  6. 6.
    A. Thorne, U. Litzén, S. Johansson: Spectrophysics (Springer, Berlin 1999) Google Scholar
  7. 7.
    K. Niemax, G. Pichler: J. Phys. B: At. Mol. Phys. 8, 179 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    M. Movre, R. Beuc: Phys. Rev. A 31, 2957 (1985) ADSCrossRefGoogle Scholar
  9. 9.
    R. Beuc, M. Movre, Č. Vadla: J. Phys. B: At. Mol. Phys. 15, 1333 (1982) ADSCrossRefGoogle Scholar
  10. 10.
    V. Horvatić, M. Movre, R. Beuc, Č. Vadla: J. Phys. B: At. Mol. Opt. Phys. 26, 3679 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    D.H. Sarkisyan, A.S. Sarkisyan, A.K. Yalanusyan: Appl. Phys. B 66, 241 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    T. Ban, H. Skenderović, R. Beuc, G. Pichler: Europhys. Lett. 48, 378 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    H. Skenderović, R. Beuc, T. Ban, G. Pichler: Eur. Phys. J. D 19, 49 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    D. Sarkisyan: private communication Google Scholar
  15. 15.
    P.W. Atkins: Physical Chemistry 6th edn. (Oxford University Press, New York 2000) Google Scholar
  16. 16.
    M. Foucrault, P. Millie, J.P. Daudey: J. Chem. Phys. 96, 1257 (1992) ADSCrossRefGoogle Scholar
  17. 17.
    M. Marinescu, A. Dalgarno: Phys. Rev. A 52, 311 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    J.S. Cohen, B. Schneider: J. Chem. Phys. 61, 3240 (1974) ADSCrossRefGoogle Scholar
  19. 19.
    M.-L. Almazor, O. Dulieu, F. Masnou-Seeuws, R. Beuc, G. Pichler: Eur. Phys. J. D 15, 355 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    R. Beuc, H. Skenderović, T. Ban, D. Veža, G. Pichler, W. Meyer: Eur. Phys. J. D 15, 209 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    M. Movre, G. Pichler: J. Phys. B: At. Mol. Phys. 10, 2631 (1977) ADSCrossRefGoogle Scholar
  22. 22.
    J. Szudy, W.E. Baylis: J. Quant. Spectrosc. Transfer 15, 641 (1975) ADSCrossRefGoogle Scholar
  23. 23.
    J. Tellinghuisen, G. Pichler, G.W. Snow, M.E. Hillard, R.J. Exton: Chem. Phys. 50, 313 (1980) ADSCrossRefGoogle Scholar
  24. 24.
    V. Kokoouline, O. Dulieu, F. Masnou-Seeuws: Phys. Rev. A 62, 022504 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    M. Otake, K. Fukuda, M. Tachikawa: Appl. Phys. B 74, 503 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    D. Sarkisyan, D. Bloch, A. Papoyan, M. Ducloy: Opt. Commun. 200, 201 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    H.-K. Chung, K. Kirby, J.F. Babb: Phys. Rev. A 63, 032516 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    L.K. Lam, A. Gallagher, M.M. Hessel: J. Chem. Phys. 66, 3550 (1977) ADSCrossRefGoogle Scholar
  29. 29.
    T. Ban, H. Skenderović, S. Ter-Avetisyan, G. Pichler: Appl. Phys. B 72, 337 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    A.G. Leonov, A.A. Rudenko, A.N. Starostin, M.D. Taran, D.I. Chekhov, I.I. Ykunin: J. Exp. Theor. Phys. 95, 242 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    F.T. Ferguson, J.A. Nuth III: J. Chem. Phys 113, 4093 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    M. Movre, G. Pichler: J. Phys. B: At. Mol. Phys. 13, 697 (1980) ADSCrossRefGoogle Scholar
  33. 33.
    A. Burrows, W.B. Hubbard, J.I. Lunine, J. Liebert: Rev. Mod. Phys. 73, 719 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute of PhysicsZagrebCroatia

Personalised recommendations