Applied Physics B

, Volume 76, Issue 8, pp 821–832 | Cite as

Multiple air-gap filters and constricted mesa lasers – material processing meets the front of optical device technology

Regular Paper

Abstract

Real three-dimensional material structures enable enormous perspectives in the functionality of advanced electronic and optoelectronic III/V semiconductor devices. We report on the technological implementation of surface-micromachined III/V semiconductor devices for optoelectronic applications. Considering fabrication technology, the general principles can be reduced to three fundamental process steps: deposition of a layered heterostructure on a substrate, vertical structurization and horizontal undercutting by selectively removing sacrificial layers. Very useful quality-control elements for precise process control are presented. The basic principles are applied and illustrated in detail by presenting two selected optoelectronic examples. (i) The fabrication technology of buried mushroom stripe lasers is shown. Bent waveguides on homogeneous grating fields are used to obtain chirped gratings, enabling a high potential to tailor specific performances. Excellent optical properties are obtained. (ii) The fabrication technology of vertical optical cavity based tunable single- or multi-membrane devices including air gaps is shown. Record optical tuning characteristics for vertical cavity Fabry–Pérot filters are presented. Single parametric wavelength tuning over 142 nm with an actuation voltage of only 3.2 V is demonstrated.

Keywords

Quantum Well Undercut IEEE Photon Dense Wavelength Division Multiplex Side Mode Suppression Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Uenishi, M. Tsugai, M. Meregany: J. Micromech. Microeng. 5, 305 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Uenishi, M. Tsugai, M. Meregany: Electron. Lett. 31, 965 (1995) CrossRefGoogle Scholar
  3. 3.
    L.J. Hornbeck: In Dig. IEEE 1996 Summer Top. Meet. MOEMS 96TH8164, 1996, p. 7 Google Scholar
  4. 4.
    H.A.C. Tilmans: J. Micromech. Microeng. 6, 157 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    S.S. Lee, L.Y. Lin, M.C. Wu: Appl. Phys. Lett. 67, 2135 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    S.S. Lee, L.Y. Lin, K.S.J. Pister, M.C. Wu, H.C. Lee, P. Grodzinski: IEEE Photon. Technol. Lett. 7, 1031 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    L.Y. Lin, J.L. Shen, S.S. Lee, M.C. Wu: Opt. Lett. 21, 155 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    L.Y. Lin, J.L. Shen, S.S. Lee, M.C. Wu, A.M. Sergent: IEEE Photon. Technol. Lett. 8, 101 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    L.Y. Lin, J.L. Shen, S.S. Lee, M.C. Wu: IEEE Photon. Technol. Lett. 9, 345 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    H. Toshiyoshi, W. Piyawattnanmetha, C.T. Chan, C.M. Wu: IEEE J. Microelectromech. Systems 10, 205 (2001) CrossRefGoogle Scholar
  11. 11.
    O. Solgaard, M. Daneman, N.C. Tien, A. Friedberger, R.S. Muller, K.Y. Lau: IEEE Photon. Technol. Lett. 7, 41 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    N.C. Tien, O. Solgaard, M.-H. Kiang, M. Daneman, K.Y. Lau, R.S. Muller: Sens. Actuators A 52, 76 (1996) CrossRefGoogle Scholar
  13. 13.
    M.J. Daneman, O. Solgaard, N.C. Tien, K.Y. Lau, R.S. Muller: IEEE Photon. Technol. Lett. 8, 396 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    B. Volland, H. Heerlein, I.W. Rangelow: Microelectron. Eng. 6162, 1015 (2002) Google Scholar
  15. 15.
    B. Volland, H. Heerlein, I.W. Rangelow, I. Kostic: Microelectron. Eng. 5758, 641 (2001) Google Scholar
  16. 16.
    I.W. Rangelow: Vacuum 62, 279 (2000) CrossRefGoogle Scholar
  17. 17.
    E. Oesterschulze: Appl. Phys. A 66, 3 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    L.Y. Lin, E.L. Goldstein, R.W. Tkach: IEEE Photon. Technol. Lett. 10, 525 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    D.T. Neilson: In Tech. Dig. Proc. OFC 2000, PD 12-1 Google Scholar
  20. 20.
    C. Marxer, N.F. de Rooij: IEEE J. Lightwave Technol. 17, 2 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    L. Pavesi: Nature 408, 440 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    K. Homewood: Nature 410, 192 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    H. Hillmer, A. Greiner, F. Steinhagen, R. Lösch, W. Schlapp, E. Binder, T. Kuhn, H. Burkhard: SPIE Proc. Ser. 2693, 352 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    H. Hillmer, K. Magari, Y. Suzuki: Photonic Technol. Lett. 5, 10 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    H. Hillmer, H.-L. Zhu, A. Grabmaier, S. Hansmann, H. Burkhard, K. Magari: Appl. Phys. Lett. 65, 2130 (1994) ADSCrossRefGoogle Scholar
  26. 26.
    H. Hillmer, A. Grabmaier, S. Hansmann, H.-L. Zhu, H. Burkhard: IEEE J. Sel. Top. Quantum Electron. 1, 356 (1995) CrossRefGoogle Scholar
  27. 27.
    H. Hillmer, A. Grabmaier, H.-L. Zhu, S. Hansmann, H. Burkhard: IEEE J. Lightwave Technol. 13, 1905 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    H. Hillmer, H. Burkhard, E. Seebald, K. Kiesel: J. Vac. Sci. Technol. B 13, 2853 (1995) CrossRefGoogle Scholar
  29. 29.
    H. Hillmer, A. Grabmaier, H. Burkhard: IEE Optoelectron. 144, 256 (1997) CrossRefGoogle Scholar
  30. 30.
    A. Spisser, R. Ledantec, C. Seassal, J.L. Leclercq, D. Rondi, T. Benyattou, G. Guillot, R. Blondeau, P. Viktorovitch: IEEE Photon. Technol. Lett. 10, 1259 (1998) ADSCrossRefGoogle Scholar
  31. 31.
    P. Tayebati, P.D. Wang, D. Vakhshoori, R.N. Sack: IEEE Photon. Technol. Lett. 10, 394 (1998) ADSCrossRefGoogle Scholar
  32. 32.
    E.C. Vail, M.S. Wu, G.S. Eng, L. Li, C.J. Chang-Hasnain: Electron. Lett. 31, 228 (1995) CrossRefGoogle Scholar
  33. 33.
    V. Jayaraman, T.J. Goodnough, T.L. Beam, F.M. Ahedo, R.A. Maurice: IEEE Photon. Technol. Lett. 12, 1595 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, H.L. Hartnagel: IEEE Photon. Technol. Lett. 9, 1235 (1997) ADSCrossRefGoogle Scholar
  35. 35.
    M. Azis, J. Pfeiffer, M. Wohlfahrth, C. Luber, S. Wu, P. Meissner: IEEE Photon. Technol. Lett. 12, 1522 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    H. Hillmer, J. Daleiden, C. Prott, F. Römer, A. Tarraf, S. Irmer, V. Rangelov, S. Schüler, M. Strassner: SPIE Proc. Ser. 4646, 145 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    M. Strassner, J. Daleiden, N. Chitica, D. Keiper, B. Stålnacke, D. Greek, K. Hjort: Sens. Actuators 85, 249 (2000) CrossRefGoogle Scholar
  38. 38.
    N. Chitica, J. Daleiden, J. Bentell, J. Andre, D. Pasquariello, S. Greek, R. Gupta, M. Karlsson, K. Hjort: Phys. Scr. T79, 131 (1999) Google Scholar
  39. 39.
    J. Daleiden, N. Chitica, M. Strassner, D. Rondi, E. Goutain, J. Peerlings, J. Pfeiffer, R. Riemenschneider, K. Hjort, R. Dantec, T. Benyattou, A. Spisser, J.L. Leclercq, P. Viktorovitch: In Proc. Conf. InP Related Materials, 1999, p. 285 [ISBN 0-7803-5562-8] Google Scholar
  40. 40.
    J. Daleiden, N. Chitica, M. Strassner, C. Prott, F. Roemer, A. Tarraf, H. Hillmer: In Tech. Dig. Summer Sch. Eur. Opt. Soc. Top. Meet. Semiconductor Microcavity Photonics, 2000 Google Scholar
  41. 41.
    M.C. Larson, B. Pezeshki, J.S. Harris Jr.: IEEE Photon. Technol. Lett. 7, 382 (1995) ADSCrossRefGoogle Scholar
  42. 42.
    H. Hillmer, J. Daleiden, C. Prott, F. Römer, S. Irmer, V. Rangelov, A. Tarraf, S. Schüler, M. Strassner: Appl. Phys. B 75, 3 (2002) ADSCrossRefGoogle Scholar
  43. 43.
    N. Chitica, J. Daleiden, M. Strassner, K. Streubel: IEEE Photon. Technol. Lett. 11, 584 (1999) ADSCrossRefGoogle Scholar
  44. 44.
    P. Viktorovitch, J.L. Leclercq, D. Rondi, E. Goutain: In SPIE Microfabrication Symp. 2000, Santa Clara, CA, 2000 Google Scholar
  45. 45.
    M.S. Wu, E.C. Vail, G.S. Yuen, W. Li, C.J. Chang-Hasnain: Electron. Lett. 31, 1671 (1995) CrossRefGoogle Scholar
  46. 46.
    M.C. Larson, A.R. Massengale, J.S. Harris: Electron. Lett. 32, 330 (1996) CrossRefGoogle Scholar
  47. 47.
    M.Y. Li, W. Yuen, G.S. Li, C.J. Chang-Hasnain: IEEE Photon. Technol. Lett. 10, 18 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    D. Vakhshoori, P. Tayebati, Azimi Chih-Cheng Lu, A. Wang, P. Jiang-Huai Zhou, E. Canoglu: Electron. Lett. 35, 1 (1999) CrossRefGoogle Scholar
  49. 49.
    N. Chitica, M. Strassner: Appl. Phys. Lett. 78, 3935 (2001) ADSCrossRefGoogle Scholar
  50. 50.
    C. Chang-Hasnain: IEEE J. Sel. Top. Quantum Eletctron. 6, 978 (2000) CrossRefGoogle Scholar
  51. 51.
    F. Sugihwo, M.C. Larson, J.S. Harris Jr.: Appl. Phys. Lett. 72, 10 (1998) ADSCrossRefGoogle Scholar
  52. 52.
    M.C. Larson, J.S. Harris Jr.: IEEE Photon. Technol. Lett. 7, 1267 (1995) ADSCrossRefGoogle Scholar
  53. 53.
    R. Riemenschneider, J. Peerlings, J. Pfeiffer, A. Dehe, P. Meissner, A. Vogt, N. Chitica, H.L. Hartnagel, K. Streubel, J. Daleiden, W. Görtz, H. Künzel: SPIE Photonic West 98, Vol. 3276 (1998) Google Scholar
  54. 54.
    J. Peerlings, R. Riemenschneider, V. Naveen Kumar, M. Strassner, V. Scheuer, J. Pfeiffer, K. Mutamba, J. Daleiden, H.L. Hartnagel, S. Herbst, P. Meissner: IEEE Photon. Technol. Lett. 11, 260 (1999) ADSCrossRefGoogle Scholar
  55. 55.
    S. Strite, M.S. Ünlü: Electron. Lett. 31, 672 (1995) ADSCrossRefGoogle Scholar
  56. 56.
    G.L. Christenson, A.T.T.D. Tran, Z.H. Zhu, Y.H. Lo, J.P. Mannaerts Hong, R. Bhat: IEEE Photon. Technol. Lett. 9, 724 (1997) ADSGoogle Scholar
  57. 57.
    L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann: Nature (2001) Google Scholar
  58. 58.
    A. Müller, J. Göttert, J. Mohr, A. Rogner: Microsystem Technol. 2, 40 (1996) CrossRefGoogle Scholar
  59. 59.
    B. Volland, F. Shi, P. Hudek, H. Heerlein, I.W. Rangelow: J. Vac. Sci. Technol. B 17, 2768 (1999) CrossRefGoogle Scholar
  60. 60.
    J. Daleiden, R. Kiefer, S. Klussmann, M. Kunzer, M. Walther, C. Manz, J. Braunstein, G. Weimann: Microelectron. Eng. 45, 9 (1999) CrossRefGoogle Scholar
  61. 61.
    J. Daleiden, K. Czotscher, C. Hoffmann, R. Kiefer, S. Müller, S. Klussmann, W. Pletschen, A. Nutsch, G. Tränkle, S. Weisser, J. Braunstein, G. Weimann: J. Vac. Sci. Technol. B 16, 1864 (1998) CrossRefGoogle Scholar
  62. 62.
    J. Daleiden, K. Eisele, R. Keller, G. Vollrath, J.D. Ralston, F. Fiedler: Opt. Quantum Electron. 28, 527 (1996) CrossRefGoogle Scholar
  63. 63.
    J. Daleiden, K. Eisele, R.E. Sah, K.H. Schmidt, J.D. Ralston: J. Vac. Sci. Technol. B 13, 2022 (1995) CrossRefGoogle Scholar
  64. 64.
    H. Hillmer, R. Lösch, W. Schlapp: J. Cryst. Growth 174, 1120 (1997) ADSCrossRefGoogle Scholar
  65. 65.
    H. Hillmer, R. Lösch, W. Schlapp, H. Burkhard: Phys. Rev. Rapid Commun. 52, R1702 (1995) Google Scholar
  66. 66.
    H. Hillmer, R. Lösch, F. Steinhagen, W. Schlapp, A. Pöcker, H. Burkhard: Electron. Lett. 31, 1346 (1995) CrossRefGoogle Scholar
  67. 67.
    H. Hillmer: Res. Trends 3, 159 (1997) Google Scholar
  68. 68.
    F. Ericson, S. Greek, J. Söderquist, J.-A. Schweitz: J. Micromech. Microeng. 7, 30 (1997) ADSCrossRefGoogle Scholar
  69. 69.
    H. Hillmer, S. Hansmann, H. Burkhard: Opt. Eng. 34, 2985 (1995) ADSCrossRefGoogle Scholar
  70. 70.
    H. Hillmer, S. Hansmann, H. Burkhard, H. Walter, A. Krost, D. Bimberg: IEEE J. Quantum Electron. 10, 2251 (1994) ADSCrossRefGoogle Scholar
  71. 71.
    S. Hansmann, H. Walter, H. Hillmer, H. Burkhard: IEEE J. Quantum Electron. QE-30, 2477 (1994) Google Scholar
  72. 72.
    H. Burkhard, E. Kuphal: IEEE J. Quantum Electron. QE-21, 650 (1985) Google Scholar
  73. 73.
    J.E. Bowers, B.R. Hemenway, A.H. Gnauck, T.J. Bridges, E.G. Burkhardt, D.P. Milt, S. Waynard: Appl. Phys. Lett. 47, 78 (1985) ADSCrossRefGoogle Scholar
  74. 74.
    Z.L. Liau, J.N. Walpole: Appl. Phys. Lett. 40, 568 (1982) ADSCrossRefGoogle Scholar
  75. 75.
    B. Broberg, S. Koentjoro, K. Furuya, Y. Suematsu: Appl. Phys. Lett. 47, 4 (1985) ADSCrossRefGoogle Scholar
  76. 76.
    B. Kempf, R. Göbel, H.W. Dinges, H. Burkhard: In Proc. 22nd Conf. Solid State Devices and Materials, Sendai, Japan, 22 August 1990 Google Scholar
  77. 77.
    H. Hillmer: US Patent No. 5600743 (1997) Google Scholar
  78. 78.
    B. Klepser, H. Hillmer: J. Lightwave Technol. 16, 1888 (1998) ADSCrossRefGoogle Scholar
  79. 79.
    H. Hillmer, B. Klepser: Proc. SPIE 3688, 308 (1998) ADSCrossRefGoogle Scholar
  80. 80.
    N. Chitica, M. Strassner, J. Daleiden: Appl. Phys. Lett. 77, 202 (2000) ADSCrossRefGoogle Scholar
  81. 81.
    R. Maboudian, R.T. Howe: J. Vac. Sci. Technol. B 15 (1997) Google Scholar
  82. 82.
    A. Tarraf, J. Daleiden, V. Rangelov, F. Römer, C. Prott, S. Irmer, E. Ataro, H. Hillmer: SPIE Proc. Ser. 4945, SPIE Photonics Fabrication Europe, Brugge, Belgium (2002) Google Scholar
  83. 83.
    F. Römer, C. Prott, S. Irmer, J. Daleiden, H. Hillmer: Appl. Phys. Lett. 82, 176 (2003) ADSCrossRefGoogle Scholar
  84. 84.
    S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Römer, M. Strassner, A. Tarraf, H. Hillmer: IEEE Photon. Technol. Lett. 15, 434 (2003) ADSCrossRefGoogle Scholar
  85. 85.
    J. Daleiden, V. Rangelov, S. Irmer, F. Römer, M. Strassner, C. Prott, A. Tarraf, H. Hillmer: Electron. Lett. 38, 1270 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Institute of Microstructure Technologies and AnalyticsUniversity of KasselKasselGermany

Personalised recommendations