Applied Physics B

, Volume 77, Issue 2–3, pp 329–336 | Cite as

Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses

Regular Paper

Abstract

We describe the virtues of the pump–probe approach for controlled supercontinuum generation in nonlinear media, using the example of pulse compression by cross-phase modulation in dielectrics. Optimization of a strong (pump) pulse and a weak (probe) pulse at the input into the medium opens the route to effective control of the supercontinuum phases at the output. We present an approximate semi-analytical approach which describes nonlinear transformation of the input pulse into the output pulse. It shows how the input and the output chirps are connected via a time-warp transformation which is almost independent of the shape of the probe pulse. We then show how this transformation can be used to optimize the supercontinuum generation to produce nearly single-cycle pulses tunable from mid-infrared to ultraviolet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.P. Agrawal: Nonlinear Fiber Optics (Academic, San Diego 1995) Google Scholar
  2. 2.
    R.W. Boyd: Nonlinear Optics (Academic, San Diego 1992) Google Scholar
  3. 3.
    Although the slowly varying envelope approximation breaks down near the single-cycle regime, previous analytical studies of relevance to the present work have used this approximation to show the potential for pulse compression by XPM. See e.g. E.M. Dianov, P.V. Mamyshev, A.M. Prokhorov, S.V. Chernikov: Kvant. Elektron. 15, 1941 (1988); A.M. Zheltikov, N.I. Koroteev, A.N. Naumov: JETP 88, 857 (1999) Google Scholar
  4. 4.
    C.G. Durfee III, S. Backus, H.C. Kapteyn, M.M. Murnane: Opt. Lett. 24, 697 (1999) Google Scholar
  5. 5.
    A.V. Sokolov, D.R. Walker, D.D. Yavuz, G.Y. Yin, S.E. Harris: Phys. Rev. Lett. 87, 033402 (2001); Phys. Rev. Lett. 85, 562 (2000) CrossRefGoogle Scholar
  6. 6.
    N. Zhavoronkov, G. Korn: Phys. Rev. Lett. 88, 203901 (2002) and references therein CrossRefGoogle Scholar
  7. 7.
    R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, C.H. Greene, M.M. Murnane, H.C. Kapteyn: Phys. Rev. Lett. 88, 013903 (2002) CrossRefGoogle Scholar
  8. 8.
    R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank: Opt. Lett. 12, 483 (1987) Google Scholar
  9. 9.
    A. Baltuška, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma: Opt. Lett. 22, 102 (1997) Google Scholar
  10. 10.
    M. Nisoli, S.D. Silvestri, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz: Opt. Lett. 22, 522 (1997) Google Scholar
  11. 11.
    A. Baltuška, T. Fuji, T. Kobayashi: Opt. Lett. 27, 306 (2002) Google Scholar
  12. 12.
    A.M. Weiner: Prog. Quantum Electron. 19, 161 (1995) CrossRefGoogle Scholar
  13. 13.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois: Opt. Lett. 25, 575 (2000) Google Scholar
  14. 14.
    V. Kalosha, M. Spanner, J. Herrmann, M.Y. Ivanov: Phys. Rev. Lett. 88, 103901 (2002) CrossRefGoogle Scholar
  15. 15.
    M. Spanner, M. Ivanov: Opt. Lett. 28, 576 (2003) Google Scholar
  16. 16.
    The propagation would have been completely linear if it were not for the interplay between spectral broadening and dispersion: spectral broadening feeds into dispersion which changes the pulse. This, in turn, affects further spectral broadening which affects dispersion, and so on Google Scholar
  17. 17.
    M. Spanner, M.Y. Ivanov, V. Kalosha, J. Herrmann, D. Wiersma, M. Pshenichnikov: Opt. Lett. 28, 749 (2003) Google Scholar
  18. 18.
    C.J. Bardeen, V.V. Yakovlev, K.R. Wilson, S.D. Carpenter, P.M. Weber, W.S. Warren: Chem. Phys. Lett. 280, 151 (1997) CrossRefGoogle Scholar
  19. 19.
    R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, H.C. Kapteyn: Nature 406, 164 (2000) CrossRefGoogle Scholar
  20. 20.
    R.S. Judson, H. Rabitz: Phys. Rev. Lett. 68, 1500 (1992) CrossRefGoogle Scholar
  21. 21.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber: Science 282, 919 (1998) CrossRefPubMedGoogle Scholar
  22. 22.
    T.C. Weinacht, J.L. White, P.H. Bucksbaum: J. Phys. Chem. A 103, 10166 (1999) CrossRefGoogle Scholar
  23. 23.
    R.J. Levis, G.M. Menkir, H. Rabitz: Science 292, 709 (2001) CrossRefGoogle Scholar
  24. 24.
    F.G. Omenetto, A.J. Taylor, M.D. Moores, D.H. Reitze: Opt. Lett. 26, 938 (2001) Google Scholar
  25. 25.
    See e.g. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn: Phys. Rev. Lett. 88, 173901 (2002); A.V. Husakou, J. Herrmann: Phys. Rev. Lett. 87, 203901 (2001) CrossRefGoogle Scholar
  26. 26.
    V.P. Kalosha, J. Herrmann: Phys. Rev. Lett. 85, 1226 (2000) CrossRefGoogle Scholar
  27. 27.
    R.K. Bullough, P.M. Jack, P.W. Kitchenside, R. Saunders: Phys. Scr. 20, 364 (1979)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Spanner
    • 1
    • 2
  • M. Pshenichnikov
    • 3
  • V. Olvo
    • 4
  • M. Ivanov
    • 2
  1. 1.Department of PhysicsUniversity of WaterlooWaterlooCanada
  2. 2.Steacie Institute for Molecular SciencesNRC CanadaOttawaCanada
  3. 3.Ultrafast Laser and Spectroscopy Laboratory, Materials Science Centre, Department of ChemistryUniversity of GroningenThe Netherlands
  4. 4.Center for Advanced ResearchOrleansCanada

Personalised recommendations