Applied Physics B

, Volume 76, Issue 7, pp 771–774

Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement

  • M. Alschinger
  • M. Maniak
  • F. Stietz
  • T. Vartanyan
  • F. Träger
Regular Paper

Abstract

We describe experiments in which the field enhancement by metal nanoparticles that accompanies surface plasmon excitation has been exploited in confocal laser scanning microscopy. The objective was to make use of the rapid decay of the enhanced light field with distance from the nanoparticles to increase the longitudinal resolution, by confining the emission of fluorescence light to the immediate vicinity of the contact area between the substrate and the objects under study. We demonstrate that the increased longitudinal resolution is accompanied by a better lateral resolution if the imaged objects have a curved surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Campion, P. Kambhampati: Chem. Soc. Rev. 27, 241 (1998) Google Scholar
  2. 2.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: J. Phys.: Condens. Matter 14, R597 (2002) Google Scholar
  3. 3.
    U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters (Springer, Berlin 1995) Google Scholar
  4. 4.
    M. Moskovits: Rev. Mod. Phys. 57, 783 (1985) Google Scholar
  5. 5.
    A. Otto, I. Mrozek, H. Grabhorn, W. Akemann: J. Phys.: Condens. Matter 4, 1143 (1992) Google Scholar
  6. 6.
    A. Wokaun: Solid State Physics, ed. by H. Ehrenreich, D. Turnbull, F. Seitz (Academic Press, Orlando 1984) Vol. 38, p. 223 Google Scholar
  7. 7.
    H.R. Stuart, D.G. Hall: Appl. Phys. Lett. 73, 3815 (1998) Google Scholar
  8. 8.
    M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, D. Meissner: Solar Energy Mater. Solar Cells 61, 97 (2000) Google Scholar
  9. 9.
    T. Schalkhammer: Chem. Mon. 129, 1067 (1998) Google Scholar
  10. 10.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Phys. Rev. Lett. 78, 1667 (1997) Google Scholar
  11. 11.
    S. Nie, S.R. Emory: Science 275, 1102 (1997) Google Scholar
  12. 12.
    R.P. Haugland (Ed.): Handbook of Fluorescent Probes and Research Chemicals, 9th edn. (Molecular Probes, Eugene 2002) Chapt. 6.5 Google Scholar
  13. 13.
    Y.-Z. Zhang, D. Carter: Appl. Immunohistochem. Mol. Morph. 7, 156 (1999) Google Scholar
  14. 14.
    C. Höppener, D. Molenda, H. Fuchs, A. Naber: Appl. Phys. Lett. 80, 1331 (2002) Google Scholar
  15. 15.
    T. Wenzel, J. Bosbach, F. Stietz, F. Träger: Surf. Sci. 432, 257 (1999) Google Scholar
  16. 16.
    J. Kümmerlen, A. Leitner, H. Brunner, F.R. Aussenegg, A. Wokaun: Mol. Phys. 80, 1031 (1993) Google Scholar
  17. 17.
    L. Holland: Vacuum Deposition of Thin Films (Chapman and Hall, London 1970) Google Scholar
  18. 18.
    W.B. Lacy, J.M. Williams, L.A. Wenzler, T.B. Beebe, Jr., J.M. Harris: Anal. Chem. 68, 1003 (1996) Google Scholar
  19. 19.
    J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Träger: Appl. Phys. Lett. 74, 2605 (1999) Google Scholar
  20. 20.
    T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger: Appl. Phys. B 69, 513 (1999)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Alschinger
    • 1
  • M. Maniak
    • 2
    • 3
  • F. Stietz
    • 1
  • T. Vartanyan
    • 1
  • F. Träger
    • 1
    • 3
  1. 1.Experimentalphysik IUniversität KasselKasselGermany
  2. 2.ZellbiologieUniversität KasselKasselGermany
  3. 3.Center for Interdisciplinary Nanostructure Science and Technology – CINSATUniversität KasselKasselGermany

Personalised recommendations