Advertisement

Applied Physics B

, Volume 77, Issue 2–3, pp 269–277 | Cite as

Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber

  • K.L. CorwinEmail author
  • N.R. Newbury
  • J.M. Dudley
  • S. Coen
  • S.A. Diddams
  • B.R. Washburn
  • K. Weber
  • R.S. Windeler
Regular Paper

Abstract

Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of input pulse parameters, and experimental results and simulations are shown to be in good quantitative agreement. For certain input pulse parameters, amplitude fluctuations as large as 50% are observed. The simulations clarify that the intensity noise on the supercontinuum arises from the amplification of two noise inputs during propagation – quantum-limited shot noise on the input pulse, and spontaneous Raman scattering in the fiber. The amplification factor is a sensitive function of the input pulse parameters. Short input pulses are critical for the generation of very broad supercontinua with low noise.

Keywords

Femtosecond Laser Intensity Noise Shot Noise Femtosecond Laser Pulse Input Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R. Alfano: The Supercontinuum Laser Source (Springer-Verlag, New York 1989) Google Scholar
  2. 2.
    J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 25 (2000) Google Scholar
  3. 3.
    T.A. Birks, W.J. Wadsworth, P.S.J. Russell: Opt. Lett. 25, 1415 (2000) Google Scholar
  4. 4.
    J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn: Phys. Rev. Lett. 88, 173901 (2002) CrossRefGoogle Scholar
  5. 5.
    X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A.P. Shreenath, R. Trebino, R.S. Windeler: Opt. Lett. 27, 1174 (2002) Google Scholar
  6. 6.
    A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W.J. Wadsworth, J.C. Knight, P.S. Russell: J. Opt. Soc. Am. B 19, 2165 (2002) Google Scholar
  7. 7.
    W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.-P.M. Man, P.S.J. Russell: J. Opt. Soc. Am. B 19, 2148 (2002) Google Scholar
  8. 8.
    J.M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R.S. Windeler: Opt. Express 10, 1215 (2002) Google Scholar
  9. 9.
    G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, M. Kaivola: Opt. Express 10, 1083 (2002) Google Scholar
  10. 10.
    B.R. Washburn, S.E. Ralph, R.S. Windeler: Opt. Express 10, 575 (2002) Google Scholar
  11. 11.
    J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S. Coen: J. Opt. Soc. Am. B 19, 765 (2002) Google Scholar
  12. 12.
    I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler: Opt. Lett. 26, 608 (2000) Google Scholar
  13. 13.
    B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, E. Scherzer: Opt. Lett. 27, 1800 (2002) Google Scholar
  14. 14.
    R. Holzwarth, A.Y. Nevsky, M. Zimmermann, T. Udem, T.W. Hänsch, J. v. Zanthier, H. Walther, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, M.N. Skvortsov, S.N. Bagayev: Appl. Phys. B 73, 269 (2001) Google Scholar
  15. 15.
    T. Udem, R. Holzwarth, T.W. Hänsch: Nature 416, 233 (2002) CrossRefGoogle Scholar
  16. 16.
    S.A. Diddams, T. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W.M. Itano, W.D. Lee, C.W. Oates, K.R. Vogel, D.J. Wineland: Science 293, 825 (2001) CrossRefGoogle Scholar
  17. 17.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stenz, R.S. Windeler, J.L. Hall, S.T. Cundiff: Science 288, 635 (2000) CrossRefGoogle Scholar
  18. 18.
    K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler: Phys. Rev. Lett. 90, 113904 (2003) CrossRefGoogle Scholar
  19. 19.
    Th. Udem, J. Reichert, R. Holzwarth, S. Diddams, D. Jones, J. Ye, S. Cundiff, T. Hänsch, J. Hall: ‘A new type of frequency chain and its application to fundamental frequency metrology’, in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, ed. by S.G. Karshenboim, F.S. Pavone, G.F. Bassani, M. Inguscio, T.W. Hänsch (Springer, Berlin 2001) pp. 125-144 Google Scholar
  20. 20.
    L. Hollberg, C.W. Oates, E.A. Curtis, E.N. Ivanov, S.A. Diddams, T. Udem, H.G. Robinson, J.C. Bergquist, R.J. Rafac, W.M. Itano, R.E. Drullinger, D.J. Wineland: IEEE J. Quantum Electron. QE-37, 1502 (2001) Google Scholar
  21. 21.
    M. Nakazawa, K. Tamura, H. Kubota, E. Yoshida: Opt. Fiber Tech. 4, 215 (1998) CrossRefGoogle Scholar
  22. 22.
    H. Kubota, K.R. Tamura, M. Nakazawa: J. Opt. Soc. Am. B 16, 2223 (1999) Google Scholar
  23. 23.
    O. Boyraz, J. Kim, M.N. Islam, F. Coppinger, B. Jalali: J. Lightwave Technol. 18, 2167 (2000) CrossRefGoogle Scholar
  24. 24.
    N.R. Newbury, B.R. Washburn, K.L. Corwin, R.S. Windeler: Opt. Lett. 28, 944 (2003) Google Scholar
  25. 25.
    A.L. Gaeta: Opt. Lett. 27, 924 (2002) Google Scholar
  26. 26.
    A.V. Husakou, J. Herrmann: Phys. Rev. Lett. 87, 203901 (2001) CrossRefGoogle Scholar
  27. 27.
    J.M. Dudley, S. Coen: Opt. Lett. 27, 1180 (2002) Google Scholar
  28. 28.
    P.D. Drummond, J.F. Corney: J. Opt. Soc. Am. B 18, 139 (2001) Google Scholar
  29. 29.
    J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 796 (2000) Google Scholar
  30. 30.
    R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus: J. Opt. Soc. Am. B 6, 1159 (1989) Google Scholar
  31. 31.
    S. Coen, D.A. Wardle, J.D. Harvey: Phys. Rev. Lett. 89, 273901 (2002) CrossRefGoogle Scholar
  32. 32.
    D.A. Wardle: Raman Scattering in Optical Fibres, Ph.D. thesis, Dept. of Physics, Univ. of Auckland (1999) Google Scholar
  33. 33.
    N.R. Newbury, K.L. Corwin: In ‘Proc. Symp. Optical Fiber Measurements in Boulder’, USA, 2002, p. 7 Google Scholar
  34. 34.
    E.N. Ivanov, S.A. Diddams, L. Hollberg: IEEE Trans. Ultrasonics, Ferroelectrics, and Freq. Control 50, 355 (2003) Google Scholar
  35. 35.
    R.P. Scott, C. Langrock, B.H. Kolner: IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001) CrossRefGoogle Scholar
  36. 36.
    G.P. Agrawal: Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Francisco 2001)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • K.L. Corwin
    • 1
    Email author
  • N.R. Newbury
    • 1
  • J.M. Dudley
    • 2
  • S. Coen
    • 3
  • S.A. Diddams
    • 1
  • B.R. Washburn
    • 1
  • K. Weber
    • 1
  • R.S. Windeler
    • 4
  1. 1.National Institute of Standards and TechnologyBoulderUSA
  2. 2.Laboratoire d’Optique P.M. DuffieuxUniversité de Franche-ComtéBesançonFrance
  3. 3.Service d’Optique et AcoustiqueUniversité Libre de BruxellesBrusselsBelgium
  4. 4.OFS LaboratoriesMurray HillUSA

Personalised recommendations