Applied Physics B

, Volume 76, Issue 7, pp 729–734 | Cite as

Tetragonal photonic woodpile structures

Regular Paper

Abstract

The photonic properties of dielectric woodpile structures with face-centered-tetragonal (fct) and body-centered-tetragonal (bct) lattice symmetries are theoretically studied. Computational calculation of the photonic band structure reveals a photonic band gap between the second and third photonic band in both symmetries. A complete photonic band gap is not found in the bct structure due to a band gap shift with variable direction of lightflow. When the degree of layer disorder in fct woodpiles is increased, the stop bands slightly narrow and the attenuation of the optical transmission is reduced. Even so, layer-to-layer misalignment in dielectric woodpile structures may be tolerable up to 20–30% in most applications. The complete photonic band gap in fct woodpiles remains open with planar layer-to-layer disorder up to 60–70%.

References

  1. 1.
    K. Ho, C. Chan, C. Soukoulis, R. Biswas, M. Sigalas: Solid State Commun. 89, 413 (1994) Google Scholar
  2. 2.
    S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano: J. Lightwave Technol. 17, 1948 (1999) Google Scholar
  3. 3.
    E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. Ho, J. Bostak, D. Bloom: Opt. Lett. 19, 1155 (1994) Google Scholar
  4. 4.
    E. Özbay, A. Aberyta, G. Tuttle, M. Tringides, R. Biswas, C. Chan, C. Soukoulis, K. Ho: Phys. Rev. B 50, 1945 (1994) Google Scholar
  5. 5.
    S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan: Science 289, 604 (2000) Google Scholar
  6. 6.
    S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, J. Bur: Nature 394, 251 (1998) Google Scholar
  7. 7.
    J. Fleming, S. Lin: Opt. Lett. 24, 49 (1999) Google Scholar
  8. 8.
    S. Noda, N. Yamamoto, A. Sakasi: Jpn. J. Appl. Phys. 35, 909 (1996) Google Scholar
  9. 9.
    E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. Soukoulis, K. Ho: Appl. Phys. Lett. 69, 3797 (1996) Google Scholar
  10. 10.
    N. Yamamoto, S. Noda: Jpn. J. Appl. Phys. 37, 3334 (1998) Google Scholar
  11. 11.
    P. Bell, J. Pendry, L. Moreno, A. Ward: Comput. Phys. Commun. 85, 306 (1995) Google Scholar
  12. 12.
    D. Wittaker: Opt. Lett. 25, 779 (2000) Google Scholar
  13. 13.
    N. Yamamoto, S. Noda: Jpn. J. Appl. Phys. 38, 1282 (1999) Google Scholar
  14. 14.
    Y. Xia, B. Gates, Z.-Y. Li: Adv. Mater. 13, 409 (2001) Google Scholar
  15. 15.
    A. Chutinan, S. Noda: Phys. Rev. B 57, R2006 (1998) Google Scholar
  16. 16.
    M. Plihal, A. Maradudin: Phys. Rev. B 44, 8565 (1991) Google Scholar
  17. 17.
    R. Meade, K. Brommer, A. Rappe, J. Joannopoulos: Appl. Phys. Lett 61, 495 (1992) Google Scholar
  18. 18.
    S. Fan, P. Villeneuve, J. Joannopoulos: J. Appl. Phys 78, 1415 (1995) Google Scholar
  19. 19.
    A. Chutinan, S. Noda: J. Opt. Soc. Am. B 16, 1398 (1999) Google Scholar
  20. 20.
    A. Chutinan, S. Noda: J. Opt. Soc. Am. B 16, 240 (1999) Google Scholar
  21. 21.
    Z.-Y. Li, Z.-Q. Zhang: Phys. Rev. B 62, 1516 (2000) Google Scholar
  22. 22.
    G. Smith, M. Kesler, J. Maloney: Mirowave Opt. Tech. Lett. 21, 191 (1999)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Max-Planck-Institute of Microstructure PhysicsHalleGermany

Personalised recommendations