Applied Physics A

, Volume 73, Issue 1, pp 103–106

Magnetic domain structures and magnetotransport properties in Co-Ag granular thin films

  • Y.J. Chen
  • J. Ding
  • L. Si
  • W.Y. Cheung
  • S.P. Wong
  • I.H. Wilson
  • T. Suzuki

DOI: 10.1007/s003390100524

Cite this article as:
Chen, Y., Ding, J., Si, L. et al. Appl Phys A (2001) 73: 103. doi:10.1007/s003390100524

Abstract.

The magnetic microstructures and magnetotransport properties in granular CoxAg1-x films with 17%≤x≤62% were studied. Magnetic force microscopy (MFM) observations showed the presence of magnetic stripe domains in as-deposited samples with x≥45% and the evolution of the magnetic domain patterns to in-plane domains with annealing. A perpendicular magnetic anisotropy as high as about 8×105 ergs/cc for as-deposited Co62Ag38 and about 6×105 ergs/cc for as-deposited Co45Ag55 was observed by magnetization and torque measurements. With increasing annealing temperature, the perpendicular magnetic anisotropy became negative. The origin of the perpendicular magnetic anisotropy may be attributed to a rhombohedral distortion of the cubic cell due to residual substrate-film stresses. The magnetic stripe domains are the consequence of the interplay of the indirect or direct exchange, perpendicular magnetic anisotropy and dipolar interactions. Finally, magnetoresistance (MR) curves displayed training behaviours and different shapes when measured with different configurations (parallel, transverse and perpendicular). It is proposed that the existence and the evolution of the magnetic domain structures strongly affect the magnetotransport properties due to the extra contribution of the electron scattering at the domain walls. Furthermore, an anisotropic MR also contributes to the overall MR curves.

PACS: 75.70.Kw; 75.70.Pa; 75.60.Lr 

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Y.J. Chen
    • 1
  • J. Ding
    • 1
  • L. Si
    • 1
  • W.Y. Cheung
    • 2
  • S.P. Wong
    • 2
  • I.H. Wilson
    • 2
  • T. Suzuki
    • 3
  1. 1.Department of Materials Science, The National Univ. of Singapore, Singapore 119260, SingaporeSG
  2. 2.Department of Electronic Engineering, The Chinese Univ. of Hong Kong, Shatin, N.T., Hong KongHK
  3. 3.Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, JapanJP

Personalised recommendations