Skip to main content
Log in

Structural-phase and tribo-corrosion properties of composite Ti3SiC2/TiC MAX-phase coatings: an experimental approach to strengthening by thermal annealing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Composite Ti3SiC2/TiC MAX-phase coating was obtained by the detonation spraying onto U9 steel substrate using the mixed powder in the molar ratio of 74Ti/20SiC/6C as raw material. At the as-sprayed state, the synthesized composite had a stable double-phase composition: the main TiC phase and secondary Ti3SiC2 MAX-phase. After thermal annealing at 700, 800 and 900 °C, oxidation occurred in the coatings, as indicated by the appearance of high-temperature-stable anatase TiO2 phase at the diffraction patterns. It was found that annealed at 800 °C coating demonstrated the best structural, compositional, tribo-mechanical and corrosion resistance characteristics. In particular, hardness increased to 1400 ± 75HV0.2, coefficient of friction decreased to 0.35, adhesion strength was 14 N, and corrosion potential was 1.88 × 10−2 A/cm2. The corrosion potential of the annealed composite was 5.5 times less than that of the steel substrate, which indicates its strong corrosion protection. The relatively higher density, the formation of the main TiC phase that inhibits the grain growth and TiO2 thin surface layer that serves as good diffusion barriers were the main reasons for the improvement of the functional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations. Data will be made available on request of the readers.

References

  1. S.G. Vadchenko, A.E. Sytschev, DYu. Kovalev, A. Shchukin, S. Konovalikhin, Nanotech. in Russia 10, 67 (2015). https://doi.org/10.1134/S1995078015010206

    Article  Google Scholar 

  2. Z.M. Sun, Int. Mater. Rev. 56, 3 (2011). https://doi.org/10.1179/1743280410Y.0000000001

    Article  Google Scholar 

  3. S.B. Li, L.F. Cheng, L.T. Zhang, Compos. Sci. Tech. 63, 6 (2003). https://doi.org/10.1016/S0266-3538(02)00285-3

    Article  Google Scholar 

  4. T. El-Raghy, M.W. Barsoum, J. Amer. Ceram. Soc. 82, 10 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02166.x

    Article  Google Scholar 

  5. A.P. Amosov, E.I. Latukhin, D.M. Davydov, Mod. Appl. Sci. 9, 3 (2015). https://doi.org/10.5539/mas.v9n3p17

    Article  Google Scholar 

  6. Y.I. Bilge, A. Erhan, Ceram. Int. 45, 9 (2019). https://doi.org/10.1016/j.ceramint.2019.03.144

    Article  Google Scholar 

  7. H.B. Zhang, S.-y Shen, X.-l Liu, Y. Zhong-he Wang, Y.-hH. Jiang, Trans Nonferrous Met. Soc. China 28, 9 (2019)

    Google Scholar 

  8. D.B. Buitkenov, B.K. Rakhadilov, B.T. Tuyakbaev, Zh.B. Sagdoldina, A.B. Kenesbekov, Key Engin. Mat. 821, 301 (2019). https://doi.org/10.4028/www.scientific.net/KEM.821.301

    Article  Google Scholar 

  9. N.N. Cherenda, V.V. Uglov, M.G. Poluyanova, V.M. Astashynski, A.M. Kuzmitski, A.D. Pogrebnjak, B. Stritzker, Plasma Proc. Polym. 6, 1 (2009). https://doi.org/10.1002/ppap.200930507

    Article  Google Scholar 

  10. A.D. Pogrebnjak, Sh.M. Ruzimov, D.L. Alontseva, P. Zukowski, C. Karwat, C. Kozak, M. Kolasik, Vacuum 81, 10 (2007). https://doi.org/10.1016/j.vacuum.2007.01.071

    Article  Google Scholar 

  11. Y. Zhou, W. Gu, Z. Metallkd. 95, 1 (2004). https://doi.org/10.3139/146.017911

    Article  Google Scholar 

  12. M.A. Lagos, C. Pellegrini, I. Agote, N. Azurmendi, J. Barcena, M. Parco, L. Silvestroni, L. Zoli, D. Sciti, J. Eur. Ceram. Soc. 39, 9 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.037

    Article  Google Scholar 

  13. M.W. Barsoum, Prog. Solid St. Chem. 28, 1–4 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  Google Scholar 

  14. M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, H. Wang, E.A. Payzant, C.R. Hubbard, J. Phys. Chem. Solids 60, 4 (1999). https://doi.org/10.1016/S0022-3697(98)00313-8

    Article  Google Scholar 

  15. M. Radovic, M. W. Barsoum T. El-Raghy, J. Seidensticker and S. Wiederhorn, Acta mater. 48, 453 (2000). https://doi.org/10.1016/S1359-6454(99)00351-1

  16. T.L. Ngai, L. Lu, J. Chen, J. Zhang, Y. Li, Ceram. Int. 40, 4 (2014). https://doi.org/10.1016/j.ceramint.2013.10.113

    Article  Google Scholar 

  17. J. Cheng, in The Principles of Astronomical Telescope Design. Astrophysics and Space Science Library, ed. by J. Cheng (Springer, New York, 2009), p. 309. https://doi.org/10.1007/b105475_5

  18. W. Krenkel, F. Berndt, Mater. Sci. Eng. A 412, 1–2 (2005). https://doi.org/10.1016/j.msea.2005.08.204

    Article  Google Scholar 

  19. F. Di Caprio, A. Russo, C. Manservigi, R. Scigliano, M. De Stefano Fumo, D. Tescione, A. Riccio, Compos. Struct. 274, 114341 (2021)

    Article  Google Scholar 

  20. X. Yin, S. He, L. Zhang, S. Fan, L.-F. Cheng, G. Tian, T. Li, Mater. Sci. Eng. A 527, 3 (2010). https://doi.org/10.1016/j.msea.2009.08.069

    Article  Google Scholar 

  21. Z. Li, A. Zhou, L. Li, L. Wang, M. Hu, S. Li, S. Gupta, Diamond Relat. Mater. 43, 29 (2014). https://doi.org/10.1016/j.diamond.2014.01.008

    Article  ADS  Google Scholar 

  22. T. Rampai, C.I. Lang, I. Sigalas, Ceram. Int. 39, 5 (2013). https://doi.org/10.1016/j.ceramint.2012.10.279

    Article  Google Scholar 

  23. Y. Xue, J. Qin, X. Zhang, M. Ma, D. He, R. Liu, Funct. Mater. Lett. 7, 4 (2014). https://doi.org/10.1142/S1793604714500404

    Article  Google Scholar 

  24. Y. Mu, J. Guo, B. Liang, Q. Wang, Int. J. Refract. Met. Hard Mater. 29, 3 (2011). https://doi.org/10.1016/j.ijrmhm.2010.12.011

    Article  Google Scholar 

  25. J. Zhang, L. Wang, W. Jiang, L. Chen, Mater. Sci. Eng. A 487, 1–2 (2008). https://doi.org/10.1016/j.msea.2007.12.004

    Article  Google Scholar 

  26. S. Konoplyuk, T. Abe, T. Uchimoto, T. Takagi, Mater. Lett. 59, 18 (2005). https://doi.org/10.1016/j.matlet.2005.02.077

    Article  Google Scholar 

  27. D.V. Dudina, G.A. Pribytkov, M.G. Krinitcyn, Ceram. Int. 42, 1 (2016). https://doi.org/10.1016/j.ceramint.2015.08.166

    Article  Google Scholar 

  28. M.M. Mikhailov, VYu. Ul’yanitskii, V.A. Vlasov, A.N. Sokolovskiy, A.A. Lovitskii, Surf. Coat. Technol. 319, 70 (2017). https://doi.org/10.1016/j.surfcoat.2017.03.069

    Article  Google Scholar 

  29. I.S. Batraev, VYu. Ulianitsky, D.V. Dudina, Mat. Today: Proceed 4, 11 (2017). https://doi.org/10.1016/j.matpr.2017.09.006

    Article  Google Scholar 

  30. VYu. Ulianitsky, I.S. Batraev, A.A. Shtertser, D.V. Dudina, N.V. Bulina, I. Smurov, Adv. Powder Tech. 29, 8 (2018). https://doi.org/10.1016/j.apt.2018.04.023

    Article  Google Scholar 

  31. VYu. Ulianitsky, D.V. Dudina, I.S. Batraev, D.K. Rybin, N.V. Bulina, A.V. Ukhina, B.B. Bokhonov, Mater. Lett. 181, 127 (2016). https://doi.org/10.1016/j.matlet.2016.06.022

    Article  Google Scholar 

  32. M. Skakov, B. Rakhadilov, M. Scheffler, E. Batyrbekov, Mater. Test. 57, 4 (2015). https://doi.org/10.3139/120.110709

    Article  Google Scholar 

  33. Y. Zhou, H. Zhang, M. Liu, J. Wang, Y. Bao, Mater. Res. Innov. 8, 2 (2004). https://doi.org/10.1080/14328917.2004.11784838

    Article  Google Scholar 

  34. S. Li, J. Xie, L. Zhang, L.-F. Cheng, Mater. Lett. 57, 20 (2003). https://doi.org/10.1016/S0167-577X(02)01429-5

    Article  Google Scholar 

  35. F. Zhang, L. Zhao, G. Yu, J. Chen, Sh. Yan, J. He, F. Yin, Surf. Coat. Technol. 422, 127581 (2021). https://doi.org/10.1016/j.surfcoat.2021.127581

    Article  Google Scholar 

  36. S.S. Hwang, S.W. Park, T.W. Kim, Key Eng. Mater. 287, 194 (2005). https://doi.org/10.4028/www.scientific.net/KEM.287.194

    Article  Google Scholar 

  37. W.B. Tian, Z.M. Sun, H. Hashimoto, Y.L. Du, Mater. Sci. Eng. A 526, 1–2 (2009). https://doi.org/10.1016/j.msea.2009.08.029

    Article  Google Scholar 

  38. Z. Oo, I.M. Low, B.H. O’Connor, Phys. B: Condens. Matter 385–386, 1 (2006). https://doi.org/10.1016/j.physb.2006.05.255

    Article  Google Scholar 

  39. Z. Oo, I.M. Low, K.E. Prince, J. Am. Ceram. Soc. 90, 8 (2007). https://doi.org/10.1111/j.1551-2916.2007.01817.x

    Article  Google Scholar 

  40. J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J.M. Schneider, H. Högberg, L. Hultman, Acta Mater. 55, 4 (2007). https://doi.org/10.1016/j.actamat.2006.10.010

    Article  Google Scholar 

  41. Y. Du, J.C. Schuster, H.J. Seifert, F. Aldinger, J. Am. Ceram. Soc. 83, 1 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01170.x

    Article  Google Scholar 

  42. M.S. Amer, M. Barsoum, T. El-Raghy, I. Weiss, J. Appl. Phys. 84, 5817 (1998). https://doi.org/10.1063/1.368849

    Article  ADS  Google Scholar 

  43. H. Zhang, S. Shen, X. Liu, Z. Wang, Y. Jiang, Y. He, Trans. Nonferrous Met. Soc. China 28, 9 (2018). https://doi.org/10.1016/S1003-6326(18)64821-6

    Article  Google Scholar 

  44. F. Noli, P. Misaelides, A. Hatzidimitriou, E. Pavlidou, A.D. Pogrebnjak, Appl. Surf. Sci. 252, 23 (2006). https://doi.org/10.1016/j.apsusc.2005.09.075

    Article  Google Scholar 

  45. A.D. Pogrebnjak, Y.N. Tyurin, Phys.-Usp. 48, 5 (2005). https://doi.org/10.1070/PU2005v048n05ABEH002055

    Article  Google Scholar 

  46. M.A. Caravaca, L.E. Kosteski, J.C. Mino, R.B. D’Ambra, B. Uberti, R.A. Casali, J. Euro. Ceram. Soc. 34, 15 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.022

    Article  Google Scholar 

  47. Q. Shi, H. Zhu, C. Li, Coatings 10, 498 (2020). https://doi.org/10.3390/coatings10050498

    Article  Google Scholar 

  48. A.J. Perry, H.K. Pulker, Thin Solid Films 124, 3–4 (1985). https://doi.org/10.1016/0040-6090(85)90283-4

    Article  Google Scholar 

  49. Z. Huang, H. Zhai, M. Guan, X. Liu, M. Ai, Y. Zhou, Wear 262, 9–10 (2007). https://doi.org/10.1016/j.wear.2006.11.003

    Article  Google Scholar 

  50. P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Prog. Mater. Sci. 51, 8 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.002

    Article  Google Scholar 

  51. A.D. Pogrebnjak, O.V. Sobol, V.M. Beresnev, P.V. Turbin, G.V. Kirik, N.A. Makhmudov, M.V. Il'yashenko, A.P. Shypylenko, M.V. Kaverin, M.Yu. Tashmetov, A.V. Pshyk, in Nanostructured Materials and Nanotechnology IV, ed. by S. Mathur, S. S. Ray, T. Ohji (Hoboken: John Wiley & Sons Inc., 2010), p 127. https://doi.org/10.1002/9780470944042.ch14

  52. A.D. Pogrebnjak, V.S. Ladysev, N.A. Pogrebnjak, A.D. Michaliov, V.T. Shablya, A.N. Valyaev, A.A. Valyaev, V.B. Loboda, Vacuum 58, 1 (2000). https://doi.org/10.1016/s0042-207x(00)00221-9

    Article  Google Scholar 

  53. A.D. Pogrebnjak, Yu.A. Kravchenko, S.B. Kislitsyn, Sh.M. Ruzimov, F. Noli, P. Misaelides, A. Hatzidimitriou, Surf. Coat. Technol. 201, 6 (2006). https://doi.org/10.1016/j.surfcoat.2006.05.018

    Article  Google Scholar 

  54. A.D. Pogrebnjak, Sh.K. Ruzimov, Phys. Lett. A 120, 5 (1987). https://doi.org/10.1016/0375-9601(87)90221-0

    Article  Google Scholar 

  55. W.K. Pang, Z. Oo, J.V. Hanna, I.M. Low, in Advances in Science and Technology of Mn+1AXn Phases, ed. by I.M. Low (Woodhead Publishing Limited, United Kingdom, 2012), p 289. https://doi.org/10.1533/9780857096012.289

  56. H.T. Hsueh, W.J. Shen, M.H. Tsai, J.W. Yeh, Surf. Coat. Technol. 206, 19–20 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.096

    Article  Google Scholar 

  57. A.D. Pogrebnjak, In Nanomaterials-Based Coatings Fundamentals and Applications ed. by P.N. Tri, S. Rtimi, C.M. Ouellet Plamondon (Elsevier, 2019) p 237. https://doi.org/10.1016/B978-0-12-815884-5.00009-0

Download references

Acknowledgements

The work was carried out in the framework of targeted funding for the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan for 2018–2020 Grant BR05236748. This research was partially funded by the Ministry of Education and Science of Ukraine under a contract to fulfil the tasks of the long-term plan for the development of the scientific direction “Mathematical Sciences and Natural Sciences” of SSU БФ/25-2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Maksakova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhadilov, B.K., Maksakova, O.V., Buitkenov, D.B. et al. Structural-phase and tribo-corrosion properties of composite Ti3SiC2/TiC MAX-phase coatings: an experimental approach to strengthening by thermal annealing. Appl. Phys. A 128, 145 (2022). https://doi.org/10.1007/s00339-022-05277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05277-7

Keywords

Navigation