Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improvement in the linear and nonlinear optical properties of Mn-doped GeSe2 chalcogenide thin films for all optical applications

  • 29 Accesses

Abstract

Novel magnetic semiconductors in bulk as well as in thin-film form are of great interest for spintronic device applications. Here, we report on the melt-quenched alloys of Mn-doped GeSe2 chalcogenide thin films deposited on microscopic glass substrates via the thermal evaporation. The optical properties of the thin films are investigated utilising the X-ray diffraction, and reflectance spectroscopy. Reflection spectroscopy data analysis shows that the deposited thin films are semiconducting, and the transitions are indirect. The values of optical band gap decrease from 2.03 to 1.58 eV with the Mn content. The disorder parameter shows a decrease with the Mn substitution. The addition of Mn in GeSe2 chalcogenide thin-film semiconductors shows an improvement in the linear and the nonlinear refractive index. The linear refractive index increases from 2.60 to 3.14 with the addition of Mn in GeSe2 chalcogenide thin-film semiconductors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    D.C. Sati, A. Dahshan, P. Sharma, Photoinduced effects for amorphous chalcogenide semiconductors. Appl. Mater. Today 17, 142–158 (2019)

  2. 2.

    P. Sharma, N. Sharma, S. Sharda, S.C. Katyal, V. Sharma, Recent developments on the optical properties of thin films of chalcogenide glasses. Prog. Solid State Chem. 44, 131–141 (2016)

  3. 3.

    V. Sharma, S. Sharda, N. Sharma, S.C. Katyal, P. Sharma, Chemical ordering and electronic properties of lone pair chalcogenide semiconductors. Prog. Solid State Chem. 54, 31–44 (2019)

  4. 4.

    A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, A. Prisacar, G. Triduh, P. Oleksenko, P. Lytvyn, Direct magnetic relief recording using As 40 S 60: Mn–Se nanocomposite multilayer structures. Nanoscale Res. Lett. 12, 286 (2017)

  5. 5.

    J. Liu, D. Shi, C. Kan, H. Yang, Heat-treatment-induced compositional evolution and magnetic state transition in magnetic chalcogenide semiconductor GeFeTe without structural phase change. ACS Appl. Mater. Interfaces. 9(44), 38651–38661 (2017)

  6. 6.

    V.V. Halyan, A.A. Konchits, B.D. Shanina, S.V. Krasnovyd, O.O. Lebed, A.H. Kevshyn, M.V. Shevchuk, A.V. Bodnaruk, V.O. Yukhymchuk, EPR of γ-induced defects and their effects on the photoluminescence in the glasses of the Ag0. 05Ga0. 05Ge0. 95S2–Er2S3 system. Radiat. Phys. Chem. 115, 189–195 (2015)

  7. 7.

    T. Dietl, A. Bonanni, H. Ohno, Families of magnetic semiconductors—an overview. J. Semicond. 40(8), 080301 (2019)

  8. 8.

    V. Dierolf, I. Ferguson, J.M. Zavada (eds.), Rare earth and transition metal doping of semiconductor materials: synthesis, magnetic properties and room temperature spintronics (Woodhead Publishing, Sawton, 2016)

  9. 9.

    E.R. Shaaban, M.A. Abdel-Rahim, M.N. Abd-el Salam, M. Mohamed, A.Y. Abdel-Latief, Structural and optical constants of annealed As47.5Se47.5Ag5 film using DSC transformation curve. Acta Phys. Pol. A 135(3), 401 (2019)

  10. 10.

    M. Mohamed, A. M. Abdelraheem, M. I. Abd-Elrahman, N. M. A. Hadia, E. R. Shaaban, Composition dependence of structural and linear and non-linear optical properties of CdS1−xMnx semiconducting thin films. Appl. Phys. A 125, 483 (2019)

  11. 11.

    V. Petkov, D. Le Messurier, Atomic-scale structure of GeSe2 glass revisited: a continuous or broken network of Ge–(Se1/2) 4 tetrahedra? J. Phys. Condens. Matter 22(11), 115402 (2010)

  12. 12.

    P.S. Salmon, R.A. Martin, P.E. Mason, G.J. Cuello, Topological versus chemical ordering in network glasses at intermediate and extended length scales. Nature 435(7038), 75 (2005)

  13. 13.

    M.T. Shatnawi, C.L. Farrow, P. Chen, P. Boolchand, A. Sartbaeva, M.F. Thorpe, S.J. Billinge, Search for a structural response to the intermediate phase in Ge x Se 1–x glasses. Phys. Rev. B 77(9), 094134 (2008)

  14. 14.

    J.S. Lee, A. Richardella, D.W. Rench, R.D. Fraleigh, T.C. Flanagan, J.A. Borchers, J. Tao, N. Samarth, Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B 89(17), 174425 (2014)

  15. 15.

    D. Lezal, J. Pedlikova, J. Zavadil, Chalcogenide glasses for optical and photonics applications. J. Optoelectron. Adv. Mater 6(1), 133–137 (2004)

  16. 16.

    Y.B. Saddeek, K. Aly, T. Alharbi, A. Dahshan, S.A.M. Issa, M. Ahmad, The role of Mn doping on the electrical and mechanical properties of Ge–Se–Mn glasses. Appl. Phys. A 125(11), 766 (2019)

  17. 17.

    A. Dahshan, P. Sharma, K.A. Aly, Optical constants of Ge-Sb-Se-I chalco-halide glasses using a single reflectance spectrum. Infrared Phys. Technol. 102, 102997 (2019)

  18. 18.

    K.A. Aly, A. Dahshan, I.S. Yahia, Optical constants for Ge30−xSe70Agx (0 ≤ x ≤ 30 at.%) thin films based only on their reflectance spectra. Philos. Mag. 92(8), 912–924 (2012)

  19. 19.

    M.S. El-Bana, R. Bohdan, S.S. Fouad, Optical characteristics and holographic gratings recording on As30Se70 thin films. J. Alloy. Compd. 686, 115–121 (2016)

  20. 20.

    M.S. El-Bana, S.S. Fouad, Optoelectrical properties of Ge10Se90 and Ge10Se85Cu5 thin films illuminated by laser beams. Appl. Phys. A 124(2), 132 (2018)

  21. 21.

    D.A. Minkov, Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum. J. Phys. D Appl. Phys. 22(8), 1157 (1989)

  22. 22.

    H. Nyakotyo, T.S. Sathiaraj, E. Muchuweni, Optical properties of electron-beam deposited quaternary Se86-xTe10Sb4Bix (0 ≤ x ≤ 8) chalcogenide alloys. Infrared Phys. Technol. 85, 99–108 (2017)

  23. 23.

    F. Chen, Z. Zhang, Y. Wang, Q. Nie, X. Shen, S. Dai, Optical properties of amorphous In-doped GeSe2 films for all-optical applications. Infrared Phys. Technol. 69, 32–35 (2015)

  24. 24.

    S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)

  25. 25.

    J.M. González-Leal, The Wemple–DiDomenico model as a tool to probe the building blocks conforming a glass. Physica Status Solidi (b) 250(5), 1044–1051 (2013)

  26. 26.

    P.T. Deshmukh, D.K. Burghate, V.S. Deogaonkar, S.P. Yawale, S.V. Pakade, Optical properties of lead-bismuth cuprous glasses. Bull. Mater. Sci. 26(6), 639–642 (2003)

  27. 27.

    D. Minkov, E. Vateva, E. Skordeva, D. Arsova, M. Nikiforova, Optical properties of Ge-As-S thin films. J. Non-Cryst. Solids 90(1–3), 481–484 (1987)

  28. 28.

    J. Singh, K. Shimakawa, Advances in Amorphous Semiconductors (CRC Press, Boca Raton, 2003)

  29. 29.

    J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

  30. 30.

    J. Tauc, Optical properties of amorphous semiconductors, Amorphous and Liquid Semiconductors (Springer, Boston, 1974), pp. 159–220

  31. 31.

    W.M. Haynes, CRC handbook of chemistry and physics (CRC Press, Boca Raton, 2014)

  32. 32.

    J. Bicerano, S.R. Ovshinsky, Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J. Non-Cryst. Solids 74(1), 75–84 (1985)

  33. 33.

    L. Wang, J. Zeng, L. Zhu, D. Yang, Q. Zhang, P. Zhang, X. Wang, S. Dai, All-optical switching in long-period fiber grating with highly nonlinear chalcogenide fibers. Appl. Opt. 57(34), 10044–10050 (2018)

  34. 34.

    M. Asobe, T. Kanamori, K. Kubodera, Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photonics Technol. Lett. 4(4), 362–365 (1992)

  35. 35.

    H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

  36. 36.

    A.M. Abdelraheem, M.I. Abd-Elrahman, M. Mohamed, N.M.A. Hadia, E.R. Shaaban, Linear and non-linear optical parameters of diluted magnetic semiconductor CdS 0.9 Mn 0.1 thin film: influence of the film thickness. J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07873-5

Download references

Acknowledgements

The author (A. Dahshan) gratefully thanks the Deanship of Scientific Research at King Khalid University for the financial support through research groups program under grant number (R.G.P.2/34/40). Authors are thankful to Dr. Deep Shikha Sharma for language editing.

Author information

Correspondence to Pankaj Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Aly, K.A., Sati, D.C. et al. Improvement in the linear and nonlinear optical properties of Mn-doped GeSe2 chalcogenide thin films for all optical applications. Appl. Phys. A 126, 173 (2020). https://doi.org/10.1007/s00339-020-3357-3

Download citation

Keywords

  • Magnetic semiconductors
  • Amorphous materials
  • Reflectance spectroscopy
  • Optical properties