Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of surface properties of ZnO rods on the formation of anatase-phase TiO2 tubes prepared by liquid deposition method

  • 10 Accesses


The effects of the surface properties of ZnO rods on the formation of anatase-phase TiO2 tubes prepared by liquid deposition method is reported. A template made of ZnO rods was prepared on FTO-coated glass by chemical bath deposition and this was then treated under different experimental conditions in an aqueous solution of ammonium hexafluorotitanate and boric acid to investigate the role of the neutral and polar (zinc/oxygen terminated) surfaces of ZnO rods on the formation of TiO2. A calcination step at 550 °C in air was applied to convert the developed Ti-based complexes on the ZnO rods into anatase-phase TiO2 nanostructures. It was observed that a 10-min deposition process led to the development of a mixture of end-capped, open-ended and perforated TiO2 tubes with dimensions resembling those of the ZnO template. Further chemical modification of the surfaces of ZnO rod templates led to the development of anatase-phase TiO2 tubes with open-ends. The surfaces of ZnO rods act as reaction sites for the synthesis of Ti-based complexes. The production of these complexes on the ZnO surface takes place on the neutral side facets of the ZnO rods, while etching of the ZnO rods occurs preferentially along the c-axis (i.e. on the Zn-(O) terminated faces. Consequently, the deposition of TiO2 is considered to happen in two stages: an early and a late stage. The early stage is characterised by the development of Ti-based complexes (Ti hydroxide monomers) on the ZnO surfaces, while the late stage is characterised by polymerisation of these monomers into Ti hydroxide polymers. At the early stage, the deposition process starts on lateral surfaces constituting a foundation for more Ti hydroxide development. Upon calcination at 550 °C in air, these tubular amorphous structures are converted into end-capped anatase-phase TiO2 tubes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy 78, 581 (2005)

  2. 2.

    T. Sugimoto, K. Okada, H. Itoh, Synthesis of uniform spindle-type titania particles by the gel-sol method. J. Colloid Interface Sci. 193, 140 (1997)

  3. 3.

    S. Deki, S. Iizuka, A. Horie, M. Mizuhata, A. Kajinami, Liquid-phase infiltration (LPI) process for the fabrication of highly nano-ordered materials. Chem. Mater. 16, 1747 (2004)

  4. 4.

    Xu Chengkun, P.H. Shin, L. Cao, Wu Jiamin, Di Gao, Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem. Mater. 22, 143 (2010)

  5. 5.

    C.M. Mbulanga, Z.N. Urgessa, S.R. Tankio Djiokap, J.R. Botha, M.M. Duvenhage, H.C. Swart, Surface characterization of ZnO nanorods grown by chemical bath deposition. Phys B 480, 42 (2016)

  6. 6.

    J. Qiu, W. Yu, X. Gao, X. Li, Sol–gel assisted ZnO nanorod arraytemplate to synthesize TiO2 nanotubearrays. Nanotechnology 17, 4695 (2006)

  7. 7.

    J.-H. Lee, I.-C. Leu, M.-C. Hsu, Y.-W. Chung, M.-H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B 109, 13057 (2005)

  8. 8.

    H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37, 33 (2005)

  9. 9.

    V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys Rev B 71, 184302 (2005)

  10. 10.

    D. Wang, J. Zhao, B. Chen, C. Zhu, Lattice vibration fundamentals in nanocrystalline anatase investigated with Raman scattering. J. Phys. 20, 85212 (2008)

  11. 11.

    F. Viñes, A. Iglesias-Juez, F. Illas, M. Fernandez-García, Hydroxyl identification on ZnO by infrared spectroscopies: theory and experiments. J. Phys. Chem. C 118, 1492 (2014)

  12. 12.

    G.-W. She, X.-H. Zhang, W.-S. Shi, X. Fan, J.C. Chang, C.-S. Lee, S.-T. Lee, C.-H. Liu, Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Appl. Phys. Lett. 92, 053111 (2008)

  13. 13.

    F. Li, Y. Ding, P.X. Gao, X.Q. Xin, Z.L. Wang, Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew. Chem. Int. Ed. Engl. 43, 5238 (2004)

  14. 14.

    W. Jolly, Modem inorganic chemistry (McGraw-Hill, New York, 1984)

  15. 15.

    R.H. Schmitt, E.L. Grove, R.D. Brown, The equivalent conductance of the hexafluorocomplexes of group IV (Si, Ge, Sn, Ti, Zr, Hf). J Am Chem Soc 82(20), 5292 (1960)

  16. 16.

    C.M. Mbulanga, Z.N. Urgessa, S.R. Tankio Djiokap, J.R. Botha, Thermal annealing studies of the deep level emission in solution grown zinc oxide nanorods. Appl Phys A 123, 129 (2017)

  17. 17.

    Z.N. Urgessa, C.M. Mbulanga, S.R. Tankio Djiokap, J.R. Botha, M.M. Duvenhage, H.C. Swart, The defect passivation effect of hydrogen on the optical properties of solution-grown ZnO nanorods. Phys B 480, 48 (2016)

  18. 18.

    Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, G. Xu, Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 125, 12384 (2003)

  19. 19.

    Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett. 78, 1125 (2001)

  20. 20.

    C.M. Mbulanga, S.R. Tankio Djiokap, Z.N. Urgessa, A. Janse van Vuuren, R. Betz, J.R. Botha, Formation mechanism of the rutile-phase of TiO2 nanorods on Ti foil substrate by gel-calcination method. J Sol-Gel Sci Technol 85, 610 (2018)

  21. 21.

    G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90, 2011 (2006)

  22. 22.

    P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904 (2011)

  23. 23.

    S. Deki, S. Iizuka, A. Horie, M. Mizuhata, A. Kajinami, Liquid-phase infiltration (LPI) process for the fabrication of highly nano-ordered materials. Chem Mater 16, 1747 (2004)

  24. 24.

    F. Small, L. Frantzis, The 21st Century Electric Utility. Positioning for a Low-Carbon Future. (CERES Inc., Boston, MA, 2010)

  25. 25.

    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991 (2002)

  26. 26.

    E.L. Miller, IEA Hydrogen Implementing Agreement Task 26: Advanced Materials for Waterphotolysis. (U.S Department of Energy, Washington, DC, USA, 2013)

  27. 27.

    X. Chen, L. Liub, F. Huang, Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 1861, 44 (2015)

  28. 28.

    A. Zaleska, Doped-TiO2: a review. Recent Pat. Eng. 2, 157 (2008)

  29. 29.

    X. Chen, C. Burda, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108, 15446 (2004)

  30. 30.

    X. Chen, Y.-B. Lou, A.C.S. Samia, C. Burda, J.L. Gole, Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv. Funct. Mater. 15, 41 (2005)

  31. 31.

    V. Gombac, L. Sordelli, T. Montini, J.J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal, P. Fornasiero, CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. J. Phys. Chem. A 114, 3916 (2010)

Download references


This work is based upon research supported by the South African National Research Foundation (NRF). The financial support from Nelson Mandela University is also gratefully acknowledged. The assistance of the Centre for High Resolution Transmission Electron Microscopy for SEM analysis is also gratefully acknowledged.

Author information

Correspondence to C. M. Mbulanga.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9458 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mbulanga, C.M., Goosen, W.E., Betz, R. et al. Effect of surface properties of ZnO rods on the formation of anatase-phase TiO2 tubes prepared by liquid deposition method. Appl. Phys. A 126, 180 (2020). https://doi.org/10.1007/s00339-020-3355-5

Download citation


  • ZnO rod templates
  • Surface properties
  • Liquid deposition
  • TiO2 tubes