Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigations of carrier transport mechanism and junction formation in Si/CZTS dual absorber solar cell technology

  • 50 Accesses

Abstract

We report on dual absorber n-silicon/p-Cu2ZnSnS4 (Si/CZTS) solar cell model with CZTS as top absorber, silicon as bottom absorber and ITO acting as transparent conducting oxide layer on top of CZTS material in order to exploit the advantages of well-established silicon technology and low-cost earth abundant CZTS materials. The valence band edge develops a triangular potential at the Si/CZTS interface, and hence, the drift–diffusion and thermionic carrier transport mechanisms are investigated using Silvaco ATLAS 2D simulator. The thermionic emission current component is suggested to improve the fill factor at the cost of short circuit current and open circuit voltage. The band discontinuities, built-in potential developed across the heterojunction, generation–recombination profile, electron and hole current densities are carefully examined to understand the transport phenomena of Si/CZTS structure for varying thickness, acceptor concentration, electron affinity and optical band gap of top CZTS absorber materials. Synthesis and deposition of CZTS thin films were carried out via sol-gel spin coating process with different preheating temperature range between 250 and 350 °C for 10 min, and absorption data obtained from experiment is used to explore the benefits of tunable band gap properties of CZTS absorbers in the Si/CZTS heterojunction solar cell device. The increased band gap for 350 °C preheated sample has minimized the electrical recombination losses and improved the infrared light absorption resulting in efficiency enhancement. Then the CZTS physical parameters are optimized for the Si/CZTS solar cell model and the conversion efficiency is improved from 8.97 to 14.74% by minimizing the electrical and optical losses of the materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    F. Chen, L. Wang, Light trapping design in silicon-based solar cells, in Solar CellsSilicon Wafer-Based Technologies, ed: www.intechopen.com, (2011)

  2. 2.

    R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, M. Godlewski, ZnO/Si heterojunction solar cell fabricated by atomic layer deposition and hydrothermal methods. Sol. Energy 155, 1282–1288 (2017)

  3. 3.

    N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L.C. Kimerling et al., Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Devices 54, 1926–1933 (2007)

  4. 4.

    S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen et al., Influence of the texturing structure on the properties of black silicon solar cell. Sol. Energy Mater. Sol. Cells 108, 200–204 (2013)

  5. 5.

    C. Zhou, H. Chung, X. Wang, P. Bermel, Design of CdZnTe and crystalline silicon tandem junction solar cells. IEEE J. Photovolt. 6(1), 301–308 (2016)

  6. 6.

    F.M.T. Enam, K.S. Rahman, M.I. Kamaruzzaman, K. Sobayel, P. Chelvanathan, B. Bais et al., Design prospects of cadmium telluride/silicon (CdTe/Si) tandem solar cells from numerical simulation. Optik 139, 397–406 (2017)

  7. 7.

    A.J. Blanker, P. Berendsen, N. Phung, Z.E.A.P. Vroon, M. Zeman, A.H.M. Smets, Advanced light management techniques for two-terminal hybrid tandem solar cells. Sol. Energy Mater. Solar Cells 181, 77–82 (2018)

  8. 8.

    T.P. White, N.N. Lal, K.R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: Top cell requirements for > 30% efficiency. IEEE J. Photovolt. 4(1), 208–214 (2014)

  9. 9.

    T.P. Dhakal, C.Y. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23–30 (2014)

  10. 10.

    D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun et al., An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells. Surf. Coat. Technol. 232, 53–59 (2013)

  11. 11.

    U. Saha, M.K. Alam, Proposition and computational analysis of a kesteritekesterite tandem solar cell with enhanced efficiency. RSC Adv. 7, 4806–4814 (2017)

  12. 12.

    A. Chaudhari, Method of making a CZTS Silicon thin film tandem solar cell, US Patent, 2016

  13. 13.

    K. Oishi, G. Saito, K. Ebina, M. Nagahashi, K. Jimbo, W.S. Maw et al., Growth of Cu2ZnSnS4 thin films on Si (100) substrates by multisource evaporation. Thin Solid Films 517, 1449–1452 (2008)

  14. 14.

    B. Shin, Y. Zhu, T. Gershon, N.A. Bojarczuk, S. Guha, Epitaxial growth of kesterite Cu2ZnSnS4 on a Si(001) substrate by thermal co-evaporation. Thin Solid Films 556, 9–12 (2014)

  15. 15.

    N. Song, M. Young, F. Liu, P. Erslev, S. Wilson, S.P. Harvey et al., Epitaxial Cu2ZnSnS4 thin film on Si (111) 4° substrate. Appl. Phys. Lett. 106, 252102 (2015)

  16. 16.

    G. Turgut, E.F. Keskenler, S. Aydın, S. Dogan, S. Duman, S. Özçelik et al., Fabrication and characterization of Al/Cu2ZnSnS4/n-Si/Al heterojunction photodiodes. Phys. Status Solidi A 211, 580–586 (2014)

  17. 17.

    X. Sheng, L. Wang, Y. Tian, Y. Luo, L. Chang, D. Yang, Low-cost fabrication of Cu2ZnSnS4 thin films for solar cell absorber layers. J. Mater. Sci.: Mater. Electron. 24, 548–552 (2013)

  18. 18.

    F. Jiang, H. Shen, W. Wang, L. Zhang, Preparation and properties of Cu2ZnSnS4 absorber and Cu2ZnSnS4/amorphous silicon thin-film solar cell. Appl. Phys. Express 4, 074101 (2011)

  19. 19.

    Z.O. Elhmaidi, R. Pandiyan, M. Abd-Lefdil, M.A.E. Khakani, Pulsed laser deposition of CZTS thin films, their thermal annealing and integration into n-SiCZTS photovoltaic devices, in International Renewable and Sustainable Energy Conference (IRSEC) (2016)

  20. 20.

    A. Ghosh, R. Thangavel, A. Gupta, Solution-processed Cd free kesterite Cu2ZnSnS4 thin film solar cells with vertically aligned ZnO nanorod arrays. J. Alloys Compd. 694, 394–400 (2017)

  21. 21.

    J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun et al., Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited Cu2ZnSnS4 precursor layers for solar cell applications. RSC Adv. 4, 23977–23984 (2014)

  22. 22.

    S. Adachi, Earth-Abundant Materials for Solar Cells Cu2-II-IV-VI4 Semiconductors (Wiley, Hoboken, 2015)

  23. 23.

    S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors Numerical Data and Graphical Information (1999)

  24. 24.

    S.S.A. Software for the design and manufacture of optical thin film coatings [Online]. http://www.sspectra.com

  25. 25.

    R.L. Anderson, Experiments on Ge-GaAs Heterojunction. Solid-State Electron. 5, 341–351 (1962)

  26. 26.

    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006)

  27. 27.

    S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu 2 ZnSnS 4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices and Microstruct. 100, 703–722 (2016)

  28. 28.

    W.R. Fahrner, Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells (2011)

  29. 29.

    L. Shen, F. Meng, Z. Liu, Roles-of-the-Fermi-level-of-doped-a-Si-H-and-band-offsets-at-a-SiHc-Si interfaces in n-type HIT solar cells. Sol. Energy 97, 168–175 (2013)

  30. 30.

    I. Bouchama, S. Ali-Saoucha, Effect of wide band-gap TCO properties on the bifacial CZTS thin-films solar cells performances. Optik 144, 370–377 (2017)

  31. 31.

    M. Courel, J.A. Andrade-Arvizu, O. Vigil-Galán, Towards a CdSCu2ZnSnS4 solar cell efficiency improvement: a theoretical approach. Appl. Phys. Lett. 105, 1–5 (2014)

  32. 32.

    K.E. Knutsen, R. Schifano, E.S. Marstein, B.G. Svensson, A.Y. Kuznetsov, Prediction of high efficiency ZnMgO/Si solar cells suppressing carrier recombination by conduction band engineering. Phys. Status Solidi A 210, 585–588 (2013)

  33. 33.

    S. Vallisree, R. Thangavel, T.R. Lenka, Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci.: Mater. Electron. 29, 7262–7272 (2018)

  34. 34.

    Silvaco, Atlas User’s ManualDevice Simulation Software (2010)

  35. 35.

    K. Yang, J.R. East, G.I. Haddad, Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition. Solid-State Electron. 36, 321–330 (1993)

  36. 36.

    S. Vallisree, R. Thangavel, T.R. Lenka, Modelling, simulation, optimization of Si/ZnO and Si/ZnMgO heterojunction solar cells. Mater. Res. Exp. 6, 025910 (2018)

  37. 37.

    M.A. Green, Solar cell fill factors: general graph and empirical expressions. Solid-State Electron. 24, 788–789 (1981)

  38. 38.

    A.D. Adewoyin, M.A. Olopade, M. Chendo, Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik Int. J. Light Electron Opt. 133, 122–131 (2017)

Download references

Author information

Correspondence to R. Thangavel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vallisree, S., Sharma, A., Thangavel, R. et al. Investigations of carrier transport mechanism and junction formation in Si/CZTS dual absorber solar cell technology. Appl. Phys. A 126, 163 (2020). https://doi.org/10.1007/s00339-020-3343-9

Download citation

Keywords

  • Heterojunction
  • Silicon
  • CZTS
  • TCAD
  • Solar cell modeling
  • Thermionic Emission
  • Triangular Potential