Skip to main content

Advertisement

Log in

Investigating the electronic and nonlinear optical properties of fullerene by substituting N, P, As, and Sb in the lattice structure: a DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we used density functional theory (DFT) to investigate the structural, electronic and nonlinear optical properties of N, P, As and Sb doped fullerene. The average polarizability and hyperpolarizability is significantly improved when these impurities are substituted individually in the (C60) lattice structure. The maximum hyperpolarizability is calculated for N-doped fullerene (3541.27 au) followed by P-doped fullerene (259.71 au), As-doped fullerene (102.52 au) and Sb-doped fullerene (32.06 au). A similar trend is observed and the polarizability is found to decrease monotonically. Both the polarizability and hyperpolarizability values are found to decrease with an increasing energy gap of the doped fullerene. N-Doped fullerene has the lowest energy gap (1.28 eV) followed by P-doped fullerene (1.94 eV), As-doped fullerene (2.02 eV) and Sb-doped fullerene (2.10 eV). The lowest energy gap minimizes the excitation energy and thus improves the nonlinear optical response. From the calculation of time-dependent-DFT (TD-DFT), it is observed that the maximum absorption wavelength of N-doped fullerene, which is about 830 nm, is shifted towards the longer wavelength at the infrared region in the case of P, As, and Sb-doped fullerenes. The results obtained through this study will help encourage the potential utilization of the metal-free doped-fullerene systems as a form of unique optical devices, thermal radiation detector, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Muhammad, T. Minami, H. Fukui, K. Yoneda, R. Kishi, Y. Shigeta, M. Nakano, J. Phys. Chem. A 116, 1417 (2012)

    Article  Google Scholar 

  2. S. Muhammad, S. Ito, M. Nakano, R. Kishi, K. Yoneda, Y. Kitagawa, M. Shkir, A. Irfan, A.R. Chaudhry, S. AlFaify, A. Kalam, A.G. Al-Sehemi, Phys. Chem. Chem. Phys. 17, 5805 (2015)

    Article  Google Scholar 

  3. B. Champagne, A. Plaquet, J.L. Pozzo, V. Rodriguez, F. Castet, J. Am. Chem. Soc. 134, 8101 (2012)

    Article  Google Scholar 

  4. S. Muhammad, H.L. Xu, R.L. Zhong, Z.M. Su, A.G. Al-Sehemi, A. Irfan, J. Mater. Chem. C 1, 5439 (2013)

    Article  Google Scholar 

  5. S. Muhammad, H. Xu, Y. Liao, Y. Kan, Z. Su, J. Am. Chem. Soc. 131, 11833 (2009)

    Article  Google Scholar 

  6. M. Niu, G. Yu, G. Yang, W. Chen, X. Zhao, X. Huang, Inorg. Chem. 53, 349 (2013)

    Article  Google Scholar 

  7. J. Maria, K.Ayub Iqbal, J. Alloys Compd. 687, 976 (2016)

    Article  Google Scholar 

  8. M. Maria, J. Iqbal, K. Ayub, RSC Adv. 6, 94228 (2016)

    Article  Google Scholar 

  9. R.L. Zhong, H.L. Xu, Z.R. Li, Z.M. Su, J. Phys. Chem. Lett. 6, 612 (2015)

    Article  Google Scholar 

  10. W. Chen, Z.R. Li, D. Wu, Y. Li, R.Y. Li, C.C. Sun, J. Phys. Chem. A 109, 2920 (2005)

    Article  ADS  Google Scholar 

  11. F.F. Wang, Z.R. Li, D. Wu, B.Q. Wang, Y. Li, Z.J. Li, W. Chen, G.T. Yu, F.L. Gu, Y. Aoki, J. Phys. Chem. B 112, 1090 (2008)

    Article  Google Scholar 

  12. W. Chen, Z.R. Li, D. Wu, F.L. Gu, X.Y. Hao, B.Q. Wang, R.J. Li, C.C. Sun, J. Chem. Phys. 121, 10489 (2004)

    Article  ADS  Google Scholar 

  13. Z.J. Li, F.F. Wang, Z.R. Li, H.L. Xu, X.R. Huang, D. Wu, W. Chen, G.T. Yu, F.L. Gu, Y. Aoki, Phys. Chem. Chem. Phys. 11, 402 (2009)

    Article  Google Scholar 

  14. A.S. Rad, S.A. Aghouzi, N. Motaghedi, S. Maleki, M. Peyravi, Mol. Simul. 42, 1519 (2016)

    Article  Google Scholar 

  15. A.S. Rad, K. Ayub, Comput. Theor. Chem. 1138, 39 (2018)

    Article  Google Scholar 

  16. A.S. Rad, H. Pazoki, S. Mohseni, D. Zareyee, M. Peyravi, Mater. Chem. Phys. 182, 32 (2016)

    Article  Google Scholar 

  17. A.S. Rad, J. Theor. Appl. Phys. 10, 307 (2016)

    Article  ADS  Google Scholar 

  18. A.S. Rad, S.M. Aghaei, Curr. Appl. Phys. 18, 133 (2018)

    Article  ADS  Google Scholar 

  19. M.I. Ionescu, Y. Zhang, R. Li, H.A. Rachid, X. Sun, Appl. Surf. Sci. 258, 4563 (2012)

    Article  ADS  Google Scholar 

  20. G.N. Ilinich, B.L. Moroz, N.A. Rudina, I.P. Prosvirin, V.I. Bukhtiyarov, Carbon 50, 1186 (2012)

    Article  Google Scholar 

  21. F.H. Monteiro, D.G. Larrude, M.E.H. Maia da Costa, L.A. Terrazos, R.B. Capaz, F.L. Freire Jr., J. Phys. Chem. C 116, 3281 (2012)

    Article  Google Scholar 

  22. T. Watanabe, S. Tsuda, T. Yamaguchi, Y. Takano, Physica C 470, S608 (2010)

    Article  ADS  Google Scholar 

  23. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  24. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  25. K.S. Novoselov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  26. C. Tian, Z. Wang, M. Jin, W. Zhao, Y. Meng, F. Wang, W. Feng, H. Liu, D. Ding, D. Wu, Chem. Phys. Lett. 511, 393 (2011)

    Article  ADS  Google Scholar 

  27. Y. Wang, L.T. Cheng, J. Phys. Chem. 96, 1530 (1992)

    Article  Google Scholar 

  28. Z.B. Liu, Y.F. Xu, X.Y. Zhang, X.L. Zhang, Y.S. Chen, J.G. Tian, J. Phys. Chem. B. 113, 9681 (2009)

    Article  Google Scholar 

  29. Y.P. Sun, G.E. Lawson, J.E. Riggs, B. Ma, N. Wang, D.K. Moton, J. Phys. Chem. A 102, 5520 (1998)

    Article  Google Scholar 

  30. S.H. Noh, C. Kwon, J. Hwang, T. Ohsaka, B.J. Kim, T.Y. Kim, Y.G. Yoon, Z. Chen, M.H. Seo, B. Han, Nanoscale. 9, 7373 (2017)

    Article  Google Scholar 

  31. B.C. Thompson, J.M.J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2008)

    Article  Google Scholar 

  32. F. Gao, G.L. Zhao, S. Yang, J.J. Spivey, J. Am. Chem. Soc. 135, 3315 (2013)

    Article  Google Scholar 

  33. F. Hassani, H. Tavakol, Sens. Actuators B Chem. 196, 624 (2014)

    Article  Google Scholar 

  34. M. Kurban, Optik 172, 295 (2018)

    Article  ADS  Google Scholar 

  35. I. Muz, M. Kurban, J. Alloys Compd. 802, 25 (2019)

    Article  Google Scholar 

  36. I. Muz, M. Kurban, K. Snli, Inorg. Chim. Acta 474, 66 (2018)

    Article  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Men-nucci, G.A. Petersson, H. Nakatsuji, M.Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N.Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E.Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.01. Gaussian Inc., Wallingford (2009)

  38. M. Evecen, H. Tanak, Appl. Phys. A 123, 91 (2017)

    Article  ADS  Google Scholar 

  39. E.S. Fatemi, M. Solimannejad, Mater. Res. Express 6, 065016 (2019)

    Article  ADS  Google Scholar 

  40. S. Ishikawa, T. Yamabe, Appl. Phys. A 123, 119 (2017)

    Article  ADS  Google Scholar 

  41. Z. Abdeveiszadeh, E. Shakerzadeh, S. Noorizadeh, Heliyon 5, e01762 (2019)

    Article  Google Scholar 

  42. S. Thakur, S.M. Borah, N.C. Adhikary, Optik 168, 228 (2018)

    Article  ADS  Google Scholar 

  43. S. Soleimani-Amiri, S. Badragheh, N. Asadbeigi, J. Chin, Chem. Soc. 66, 866 (2019)

    Google Scholar 

  44. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  45. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  46. Y. Yang, M.N. Weaver, K.M. Merz Jr., J. Phys. Chem. A 36, 9843 (2009)

    Article  Google Scholar 

  47. A.S. Rad, E. Abedini, Appl. Surf. Sci. 360, 1041 (2016)

    Article  ADS  Google Scholar 

  48. E. Lyngvi, F. Schoenebeck, Tetrahedron 69, 5715 (2013)

    Article  Google Scholar 

  49. D.L. Wang, H.L. Xu, Z.M. Su, D.Y. Hou, Comput. Theor. Chem. 978, 166 (2011)

    Article  Google Scholar 

  50. D. Wang, X. Wang, X. Gao, D. Hou, Comput. Theor. Chem. 989, 33 (2012)

    Article  Google Scholar 

  51. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  52. T. Koopmans, Physica. 1, 104 (1933)

    Article  ADS  Google Scholar 

  53. T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2011)

    Article  Google Scholar 

  54. M.C.J.M. Vissenberg, M. Matters, Phys. Rev. B 57, 12964 (1998)

    Article  ADS  Google Scholar 

  55. H. Bässler, Phys. Status Solidi B 175, 15 (2006)

    Article  ADS  Google Scholar 

  56. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2832 (2008)

  57. L. Pauling, The Nature of the chemical bond (Cornell University Press, Ithaca, 1960)

    MATH  Google Scholar 

  58. M. Koohi, S. Soleimani-Amiri, M. Shariati, Struct. Chem. 29, 909 (2018)

    Article  Google Scholar 

  59. S. Li, Semiconductor physical electronics, 2nd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  60. N. Otero, P. Karamanis, M. Mandado, Phys. Chem. Chem. Phys. 21, 6274 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to extend his sincere appreciation to the Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute under DST Govt. of India) and Department of Applied Sciences, Gauhati University for providing the computing facility for the simulation and their generous support. The author would also like to acknowledge the Director of Gauhati University Institute of Science and Technology, head, Dept. of Applied Sciences, Gauhati University and MHRD, Govt. of India, for offering Research Assistantship under TEQIP-III Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirab C. Adhikary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Borah, S.M., Singh, A. et al. Investigating the electronic and nonlinear optical properties of fullerene by substituting N, P, As, and Sb in the lattice structure: a DFT study. Appl. Phys. A 126, 130 (2020). https://doi.org/10.1007/s00339-020-3300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3300-7

Keywords

Navigation