Applied Physics A

, 126:103 | Cite as

Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation

  • Hassan Alehdaghi
  • Maziyar Kazemi
  • Mohammad ZirakEmail author


Ultrasonic mist vapor deposition (UMVD) is a widely used facile technique to prepare ZnO thin films. The surface properties of prepared thin films can be tuned via easily controllable UMVD deposition parameters. Herein, we utilized an oblique angle (OA) geometry in UMVD system named as OA-UMVD. The angle between incident flow and substrate (θs) was changed from 0° to 45°. Alteration of θs as well as substrate temperature (Ts) resulted in the deposition of ZnO thin films with different morphologies. For mild nozzle–substrate distance (D = 3 cm), fine vertical ZnO nanosheets with length of 123 nm and thickness of 23 nm were obtained for low Ts (330 °C) and small θs (≈ 0°). By increasing both Ts and θs, ZnO nanorods gradually appeared on the surface. Both nozzle–substrate distance (D) and Ts showed similar effect on deposition rate (Rd), and Rd decreased by increase of D and Ts, while deposition rate increased for larger θs. Confocal microscopy results revealed that using low Ts (330 °C), short distance (D = 1.5 cm) and large θs (45°) resulted in high macroscopic surface roughness (MRs) of 98 nm, while high Ts (500 °C), long D (5 cm) and small θs (≈ 0) created compact and smooth surface with low MRs of 5 nm, in accordance with transmittance results. The ZnO wurtzite crystal structure was approved via X-ray diffraction patterns. The crystallite size in the layers was affected only by Ts, and θs had no significant effect on the layers’ crystallinity. Obtaining different ZnO nanostructures with different MRs via easily and accurately controllable growth parameters is a great advantage for our employed OA-UMVD system, which could be used to prepare ZnO thin films with desired morphologies for widespread application fields.


ZnO thin film Oblique angle Ultrasonic mist vapor deposition Different morphologies 



The financial support of Research and Technology Council of the Hakim Sabzevari University is greatly acknowledged.

Supplementary material

339_2020_3295_MOESM1_ESM.docx (5.8 mb)
Supplementary file1 (DOCX 5983 kb)


  1. 1.
    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, J. Jang, H. Zare, Mater. Chem. Phys. 204, 262 (2018). CrossRefGoogle Scholar
  2. 2.
    Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127(20), 10102 (2016). ADSCrossRefGoogle Scholar
  3. 3.
    M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45(4), 2197 (2019). CrossRefGoogle Scholar
  4. 4.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016). ADSCrossRefGoogle Scholar
  5. 5.
    P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5(6), 5158 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Benosman, Z. Dridi, Y. Al-Douri, B. Bouhafs, Int. J. Mod. Phys. B 30(31), 1650225 (2016). ADSCrossRefGoogle Scholar
  7. 7.
    W. Zhang, S. Chang, S. Yao, H. Wang, J. Electron. Mater. 48(8), 4895 (2019). ADSCrossRefGoogle Scholar
  8. 8.
    M. Ahmadi, M. Shafiey Dehaj, S. Ghazanfarpour, S. Ghazanfarpour, Appl. Phys. A 125(9), 604 (2019). ADSCrossRefGoogle Scholar
  9. 9.
    F. Liu, X. Chen, X. Wang, Y. Han, X. Song, J. Tian, X. He, H. Cui, Sens. Actuators B Chem. 291, 155 (2019). CrossRefGoogle Scholar
  10. 10.
    F. Khosravi-Nejad, M. Teimouri, S. Jafari Marandi, M. Shariati, Appl. Phys. A 125(9), 616 (2019). ADSCrossRefGoogle Scholar
  11. 11.
    N.N. Jandow, A.K. Elttayef, A.F. Majied, N.F. Habubi, N. Saadeddin, Y. Al-Douri, A.I.P. Conf, Proc. 2083(1), 020003 (2019). CrossRefGoogle Scholar
  12. 12.
    N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik 125(11), 2560 (2014). ADSCrossRefGoogle Scholar
  13. 13.
    M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, J. Alloys Compd. 590, 507 (2014). CrossRefGoogle Scholar
  14. 14.
    M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, Appl. Surf. Sci. 273, 391 (2013). ADSCrossRefGoogle Scholar
  15. 15.
    M. Zirak, H. Oveisi, J. Lin, Y. Bando, A.A. Alshehri, J. Kim, Y. Ide, M.S.A. Hossain, V. Malgras, Y. Yamauchi, Bull. Chem. Soc. Jpn. 91(10), 1556 (2018). CrossRefGoogle Scholar
  16. 16.
    C. Ma, Z. Liu, Z. Tong, C. Han, Q. Cai, Appl. Phys. A 125(7), 451 (2019). ADSCrossRefGoogle Scholar
  17. 17.
    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, Org. Electron. 16, 87 (2015). CrossRefGoogle Scholar
  18. 18.
    J.F.S. Fernando, C. Zhang, K.L. Firestein, J.Y. Nerkar, D.V. Golberg, J. Mater. Chem. A 7(14), 8460 (2019). CrossRefGoogle Scholar
  19. 19.
    H. Sun, S.-C. Chen, C.-H. Wang, Y.-W. Lin, C.-K. Wen, T.-H. Chuang, X. Wang, S.-S. Lin, M.-J. Dai, Surf. Coat. Technol. 359, 390 (2019). CrossRefGoogle Scholar
  20. 20.
    A. Mameli, B. Karasulu, M.A. Verheijen, B. Barcones, B. Macco, A.J.M. Mackus, W.M.M.E. Kessels, F. Roozeboom, Chem. Mater. 31(4), 1250 (2019). CrossRefGoogle Scholar
  21. 21.
    C.-Q. Luo, F.C.-C. Ling, M.A. Rahman, M. Phillips, C. Ton-That, C. Liao, K. Shih, J. Lin, H.W. Tam, A.B. Djurišić, S.-P. Wang, Appl. Surf. Sci. 483, 1129 (2019). ADSCrossRefGoogle Scholar
  22. 22.
    R. Bhujel, S. Rai, B.P. Swain, Mater. Sci. Semicond. Process. 102, 104592 (2019). CrossRefGoogle Scholar
  23. 23.
    R. Al-Gaashani, S. Radiman, A. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39(3), 2283 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Steiger, J. Zhang, K. Harrabi, I.A. Hussein, J.M. Downing, M.A. McLachlan, Thin Solid Films 645, 417 (2018). ADSCrossRefGoogle Scholar
  25. 25.
    M. Pérez-González, S.A. Tomás, J. Santoyo-Salazar, S. Gallardo-Hernández, M.M. Tellez-Cruz, O. Solorza-Feria, J. Alloys Compd. 779, 908 (2019). CrossRefGoogle Scholar
  26. 26.
    M. Kashif, Y. Al-Douri, U. Hashim, M. Ali, S. Ali, M. Willander, Micro. Nano Lett. 7(2), 163 (2012)Google Scholar
  27. 27.
    K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Result Phys. 7, 1190 (2017). ADSCrossRefGoogle Scholar
  28. 28.
    N. Hassan, M. Hashim, Y. Al-Douri, K. Al-Heuseen, Int. J. Electrochem. Sci. 7, 4625 (2012)Google Scholar
  29. 29.
    Y.J. Onofre, A.C. Catto, S. Bernardini, T. Fiorido, K. Aguir, E. Longo, V.R. Mastelaro, L.F. da Silva, M.P.F. de Godoy, Appl. Surf. Sci. 478, 347 (2019). ADSCrossRefGoogle Scholar
  30. 30.
    H. Alehdaghi, M. Zirak, J. Mater. Sci. Mater. Electron. 30(3), 2706 (2019). CrossRefGoogle Scholar
  31. 31.
    S. Benramache, Y. Aoun, A. Charef, B. Benhaoua, S. Lakel, Inorg. Nano–Micro Chem. 49(6), 177 (2019). CrossRefGoogle Scholar
  32. 32.
    Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45(32), L857 (2006). ADSCrossRefGoogle Scholar
  33. 33.
    V. Mata, A. Maldonado, O.M. de la Luz, Mater. Sci. Semicond. Process. 75, 288 (2018). CrossRefGoogle Scholar
  34. 34.
    H. Tanoue, M. Takenouchi, T. Yamashita, S. Wada, Z. Yatabe, S. Nagaoka, Y. Naka, Y. Nakamura, Phys. Stat. Solid. A Appl. Mater. Sci. (2017). CrossRefGoogle Scholar
  35. 35.
    H. Tanoue, T. Taniguchi, S. Wada, S. Yamamoto, S. Nakamura, Y. Naka, H. Yoshikawa, M. Munekata, S. Nagaoka, Y. Nakamura, Appl. Phys. Express (2015). CrossRefGoogle Scholar
  36. 36.
    H.L. Ma, Z.W. Liu, D.C. Zeng, M.L. Zhong, H.Y. Yu, E. Mikmekova, Appl. Surf. Sci. 283, 1006 (2013). ADSCrossRefGoogle Scholar
  37. 37.
    K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2013). CrossRefGoogle Scholar
  38. 38.
    K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2012). CrossRefGoogle Scholar
  39. 39.
    E. Gungor, T. Gungor, Adv. Mater. Sci. Eng. (2012). CrossRefGoogle Scholar
  40. 40.
    S. Edinger, J. Bekacz, M. Richter, R. Hamid, R.A. Wibowo, A. Peic, T. Dimopoulos, Thin Solid Films 594, 238 (2015). ADSCrossRefGoogle Scholar
  41. 41.
    J. Cheng, R. Hu, Q. Wang, C.X. Zhang, Z. Xie, Z.W. Long, X. Yang, L. Li, Int. J. Photoenergy (2015). CrossRefGoogle Scholar
  42. 42.
    J.H. Min, X.Y. Liang, B. Wang, Y. Zhao, Y. Guo, L.J. Wang, Adv. Mater. Res. 299–300, 475 (2011). CrossRefGoogle Scholar
  43. 43.
    E. Emil, G. Alkan, S. Gurmen, R. Rudolf, D. Jenko, B. Friedrich, Metals (2018). CrossRefGoogle Scholar
  44. 44.
    W.G. Yang, Z. Yang, D. Li, X.Y. Zhang, Z.L. Zhou, S. Tian, Y.Q. Tong, C.H. Xia, M. Liu, L. Li, F. Wang, Mod Phys Lett B (2018). CrossRefGoogle Scholar
  45. 45.
    N. Zebbar, M. Trari, M. Doulache, A. Boughelout, L. Chabane, Appl. Surf. Sci. 292, 837 (2014). ADSCrossRefGoogle Scholar
  46. 46.
    H. In Sub, P. Il-Kyu, Korean J Mater Res 27(11), 609 (2017)CrossRefGoogle Scholar
  47. 47.
    A.J. Wang, H. Chen, T.F. Chen, Z.L. Wu, Y.L. Li, Y.S. Wang, J. Nanosci. Nanothech. 14(5), 3804 (2014). CrossRefGoogle Scholar
  48. 48.
    S. Benramache, B. Benhaoua, F. Chabane, A. Guettaf, Optik 124(18), 3221 (2013). ADSCrossRefGoogle Scholar
  49. 49.
    N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Mater. Sci. Semicond. Process. 14(3–4), 229 (2011). CrossRefGoogle Scholar
  50. 50.
    X. Zhao, J. Cheng, J. Mater. Sci. Mater. Electron. 27(3), 2676 (2016). CrossRefGoogle Scholar
  51. 51.
    C. Biswas, Z. Ma, X.D. Zhu, T. Kawaharamura, K.L. Wang, Sol. Energy Mater. Sol. Cells 157, 1048 (2016). CrossRefGoogle Scholar
  52. 52.
    H.-J. Jeon, S.-G. Lee, K.-S. Shin, S.-W. Kim, J.-S. Park, J. Alloys Compd. 614, 244 (2014)CrossRefGoogle Scholar
  53. 53.
    S. Jongthammanurak, M. Witana, T. Cheawkul, C. Thanachayanont, Mater. Sci. Semicond. Process. 16(3), 625 (2013). CrossRefGoogle Scholar
  54. 54.
    M.T. Htay, Y. Tani, Y. Hashimoto, K. Ito, J. Mater. Sci. Mater. Electron. 20, 341 (2009). CrossRefGoogle Scholar
  55. 55.
    P. Singh, A. Kumar, Deepak, D. Kaur, J. Cryst. Growth 306(2), 303 (2007) ADSCrossRefGoogle Scholar
  56. 56.
    Z.K. Zhang, J.M. Bian, J.C. Sun, X.W. Ma, Y.X. Wang, C.H. Cheng, Y.M. Luo, H.Z. Liu, Mater. Res. Bull. 47(9), 2685 (2012). CrossRefGoogle Scholar
  57. 57.
    K.H. Kim, K.S. Shin, B. Kumar, K.K. Kim, S.W. Kim, J. Nanoelectron. Optoelectron. 5(2), 247 (2010). CrossRefGoogle Scholar
  58. 58.
    K.P. Liu, B.F. Yang, H.W. Yan, Z.P. Fu, M.W. Wen, Y.J. Chen, J. Zuo, Appl. Surf. Sci. 255(5), 2052 (2008). ADSCrossRefGoogle Scholar
  59. 59.
    T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 47(6), 4669 (2008). ADSCrossRefGoogle Scholar
  60. 60.
    L. Munoz-Fernandez, G. Alkan, O. Milosevic, M.E. Rabanal, B. Friedrich, Catal. Today 321, 26 (2019). CrossRefGoogle Scholar
  61. 61.
    M. Khammar, S. Guitouni, N. Attaf, M.S. Aida, A. Attaf, Ceram. Int. 43(13), 9919 (2017). CrossRefGoogle Scholar
  62. 62.
    A. Gahtar, A. Rahal, B. Benhaoua, S. Benramache, Optik 125(14), 3674 (2014). ADSCrossRefGoogle Scholar
  63. 63.
    V.K. Jayaraman, A.M. Alvarez, M.D.O. Amador, Mater. Lett. 157, 169 (2015). CrossRefGoogle Scholar
  64. 64.
    G. Kenanakis, N. Katsarakis, E. Koudoumas, Thin Solid Films 555, 62 (2014). ADSCrossRefGoogle Scholar
  65. 65.
    G. Kenanakis, N. Katsarakis, Mater. Res. Bull. 60, 752 (2014). CrossRefGoogle Scholar
  66. 66.
    O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Mater. Chem. Phys. 148(3), 712 (2014). CrossRefGoogle Scholar
  67. 67.
    M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311(20), 4499 (2009). ADSCrossRefGoogle Scholar
  68. 68.
    Y. Benkhetta, A. Attaf, H. Saidi, A. Bouhdjar, H. Benjdidi, I.B. Kherchachi, M. Nouadji, N. Lehraki, Optik 127(5), 3005 (2016). ADSCrossRefGoogle Scholar
  69. 69.
    Y. Aoun, B. Benhaoua, S. Benramache, B. Gasmi, Optik 126(20), 2481 (2015). ADSCrossRefGoogle Scholar
  70. 70.
    B. Wang, J.H. Min, Y. Zhao, W.B. Sang, C.J. Wang, Appl. Phys. Lett. (2009). CrossRefGoogle Scholar
  71. 71.
    S. Sali, M. Boumaour, M. Kechouane, S. Kermadi, F. Aitamar, Phys. B Cond. Mater. 407(13), 2626 (2012). ADSCrossRefGoogle Scholar
  72. 72.
    K. Robbie, M.J. Brett, J. Vac. Sci. Thech. A 15(3), 1460 (1997). ADSCrossRefGoogle Scholar
  73. 73.
    F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Thin Solid Films 628, 36 (2017). ADSCrossRefGoogle Scholar
  74. 74.
    O. Gracia-Martinez, R.M. Rojas, E. Vila, J.L. Martin de Vidales, Solid State Ionics 63, 442 (1993)CrossRefGoogle Scholar
  75. 75.
    Y. Zhao, D. Ye, G.-C. Wang, T.-M. Lu, Designing nanostructures by glancing angle deposition. SPIE (2003)Google Scholar
  76. 76.
    Y.E. Lee, S.G. Kim, Y.J. Kim, H.J. Kim, J. Vac. Sci. Thech. A 15(3), 1194 (1997). ADSCrossRefGoogle Scholar
  77. 77.
    K. Robbie, M.J. Brett, A. Lakhtakia, Nature 384(6610), 616 (1996). ADSCrossRefGoogle Scholar
  78. 78.
    A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, T. Karabacak, Thin Solid Films 589, 764 (2015). ADSCrossRefGoogle Scholar
  79. 79.
    J. Chu, X. Peng, M. Sajjad, B. Yang, P.X. Feng, Thin Solid Films 520(9), 3493 (2012). ADSCrossRefGoogle Scholar
  80. 80.
    T. Karabacak, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Thech. A 22(4), 1778 (2004). ADSCrossRefGoogle Scholar
  81. 81.
    W. Tang, Preparation Principle, Technology and Application of Thin Film Materials (Metallurgical Industry Press, Beijing, 2003)Google Scholar
  82. 82.
    S.-H. Hu, Y.-C. Chen, C.-C. Hwang, C.-H. Peng, D.-C. Gong, J. Alloys Compd. 500(2), L17 (2010)CrossRefGoogle Scholar
  83. 83.
    P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12(5), 323 (2002)CrossRefGoogle Scholar
  84. 84.
    R.N. Tait, T. Smy, M.J. Brett, Thin Solid Films 226(2), 196 (1993). ADSCrossRefGoogle Scholar
  85. 85.
    J.M. LaForge, M.T. Taschuk, M.J. Brett, Thin Solid Films 519(11), 3530 (2011). ADSCrossRefGoogle Scholar
  86. 86.
    A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Prog. Mater. Sci. 76, 59 (2016). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIslamic Republic of Iran

Personalised recommendations