Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation

  • 31 Accesses

Abstract

Ultrasonic mist vapor deposition (UMVD) is a widely used facile technique to prepare ZnO thin films. The surface properties of prepared thin films can be tuned via easily controllable UMVD deposition parameters. Herein, we utilized an oblique angle (OA) geometry in UMVD system named as OA-UMVD. The angle between incident flow and substrate (θs) was changed from 0° to 45°. Alteration of θs as well as substrate temperature (Ts) resulted in the deposition of ZnO thin films with different morphologies. For mild nozzle–substrate distance (D = 3 cm), fine vertical ZnO nanosheets with length of 123 nm and thickness of 23 nm were obtained for low Ts (330 °C) and small θs (≈ 0°). By increasing both Ts and θs, ZnO nanorods gradually appeared on the surface. Both nozzle–substrate distance (D) and Ts showed similar effect on deposition rate (Rd), and Rd decreased by increase of D and Ts, while deposition rate increased for larger θs. Confocal microscopy results revealed that using low Ts (330 °C), short distance (D = 1.5 cm) and large θs (45°) resulted in high macroscopic surface roughness (MRs) of 98 nm, while high Ts (500 °C), long D (5 cm) and small θs (≈ 0) created compact and smooth surface with low MRs of 5 nm, in accordance with transmittance results. The ZnO wurtzite crystal structure was approved via X-ray diffraction patterns. The crystallite size in the layers was affected only by Ts, and θs had no significant effect on the layers’ crystallinity. Obtaining different ZnO nanostructures with different MRs via easily and accurately controllable growth parameters is a great advantage for our employed OA-UMVD system, which could be used to prepare ZnO thin films with desired morphologies for widespread application fields.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, J. Jang, H. Zare, Mater. Chem. Phys. 204, 262 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.051

  2. 2.

    Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127(20), 10102 (2016). https://doi.org/10.1016/j.ijleo.2016.08.012

  3. 3.

    M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45(4), 2197 (2019). https://doi.org/10.1007/s11164-018-03729-5

  4. 4.

    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

  5. 5.

    P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5(6), 5158 (2011)

  6. 6.

    F. Benosman, Z. Dridi, Y. Al-Douri, B. Bouhafs, Int. J. Mod. Phys. B 30(31), 1650225 (2016). https://doi.org/10.1142/s0217979216502258

  7. 7.

    W. Zhang, S. Chang, S. Yao, H. Wang, J. Electron. Mater. 48(8), 4895 (2019). https://doi.org/10.1007/s11664-019-07278-4

  8. 8.

    M. Ahmadi, M. Shafiey Dehaj, S. Ghazanfarpour, S. Ghazanfarpour, Appl. Phys. A 125(9), 604 (2019). https://doi.org/10.1007/s00339-019-2882-4

  9. 9.

    F. Liu, X. Chen, X. Wang, Y. Han, X. Song, J. Tian, X. He, H. Cui, Sens. Actuators B Chem. 291, 155 (2019). https://doi.org/10.1016/j.snb.2019.04.009

  10. 10.

    F. Khosravi-Nejad, M. Teimouri, S. Jafari Marandi, M. Shariati, Appl. Phys. A 125(9), 616 (2019). https://doi.org/10.1007/s00339-019-2890-4

  11. 11.

    N.N. Jandow, A.K. Elttayef, A.F. Majied, N.F. Habubi, N. Saadeddin, Y. Al-Douri, A.I.P. Conf, Proc. 2083(1), 020003 (2019). https://doi.org/10.1063/1.5094306

  12. 12.

    N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik 125(11), 2560 (2014). https://doi.org/10.1016/j.ijleo.2013.10.023

  13. 13.

    M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, J. Alloys Compd. 590, 507 (2014). https://doi.org/10.1016/j.jallcom.2013.12.158

  14. 14.

    M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, Appl. Surf. Sci. 273, 391 (2013). https://doi.org/10.1016/j.apsusc.2013.02.050

  15. 15.

    M. Zirak, H. Oveisi, J. Lin, Y. Bando, A.A. Alshehri, J. Kim, Y. Ide, M.S.A. Hossain, V. Malgras, Y. Yamauchi, Bull. Chem. Soc. Jpn. 91(10), 1556 (2018). https://doi.org/10.1246/bcsj.20180108

  16. 16.

    C. Ma, Z. Liu, Z. Tong, C. Han, Q. Cai, Appl. Phys. A 125(7), 451 (2019). https://doi.org/10.1007/s00339-019-2742-2

  17. 17.

    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, Org. Electron. 16, 87 (2015). https://doi.org/10.1016/j.orgel.2014.10.038

  18. 18.

    J.F.S. Fernando, C. Zhang, K.L. Firestein, J.Y. Nerkar, D.V. Golberg, J. Mater. Chem. A 7(14), 8460 (2019). https://doi.org/10.1039/C8TA12511B

  19. 19.

    H. Sun, S.-C. Chen, C.-H. Wang, Y.-W. Lin, C.-K. Wen, T.-H. Chuang, X. Wang, S.-S. Lin, M.-J. Dai, Surf. Coat. Technol. 359, 390 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.105

  20. 20.

    A. Mameli, B. Karasulu, M.A. Verheijen, B. Barcones, B. Macco, A.J.M. Mackus, W.M.M.E. Kessels, F. Roozeboom, Chem. Mater. 31(4), 1250 (2019). https://doi.org/10.1021/acs.chemmater.8b03165

  21. 21.

    C.-Q. Luo, F.C.-C. Ling, M.A. Rahman, M. Phillips, C. Ton-That, C. Liao, K. Shih, J. Lin, H.W. Tam, A.B. Djurišić, S.-P. Wang, Appl. Surf. Sci. 483, 1129 (2019). https://doi.org/10.1016/j.apsusc.2019.03.228

  22. 22.

    R. Bhujel, S. Rai, B.P. Swain, Mater. Sci. Semicond. Process. 102, 104592 (2019). https://doi.org/10.1016/j.mssp.2019.104592

  23. 23.

    R. Al-Gaashani, S. Radiman, A. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39(3), 2283 (2013)

  24. 24.

    P. Steiger, J. Zhang, K. Harrabi, I.A. Hussein, J.M. Downing, M.A. McLachlan, Thin Solid Films 645, 417 (2018). https://doi.org/10.1016/j.tsf.2017.11.021

  25. 25.

    M. Pérez-González, S.A. Tomás, J. Santoyo-Salazar, S. Gallardo-Hernández, M.M. Tellez-Cruz, O. Solorza-Feria, J. Alloys Compd. 779, 908 (2019). https://doi.org/10.1016/j.jallcom.2018.11.302

  26. 26.

    M. Kashif, Y. Al-Douri, U. Hashim, M. Ali, S. Ali, M. Willander, Micro. Nano Lett. 7(2), 163 (2012)

  27. 27.

    K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Result Phys. 7, 1190 (2017). https://doi.org/10.1016/j.rinp.2017.03.013

  28. 28.

    N. Hassan, M. Hashim, Y. Al-Douri, K. Al-Heuseen, Int. J. Electrochem. Sci. 7, 4625 (2012)

  29. 29.

    Y.J. Onofre, A.C. Catto, S. Bernardini, T. Fiorido, K. Aguir, E. Longo, V.R. Mastelaro, L.F. da Silva, M.P.F. de Godoy, Appl. Surf. Sci. 478, 347 (2019). https://doi.org/10.1016/j.apsusc.2019.01.197

  30. 30.

    H. Alehdaghi, M. Zirak, J. Mater. Sci. Mater. Electron. 30(3), 2706 (2019). https://doi.org/10.1007/s10854-018-0546-3

  31. 31.

    S. Benramache, Y. Aoun, A. Charef, B. Benhaoua, S. Lakel, Inorg. Nano–Micro Chem. 49(6), 177 (2019). https://doi.org/10.1080/24701556.2019.1624568

  32. 32.

    Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45(32), L857 (2006). https://doi.org/10.1143/jjap.45.l857

  33. 33.

    V. Mata, A. Maldonado, O.M. de la Luz, Mater. Sci. Semicond. Process. 75, 288 (2018). https://doi.org/10.1016/j.mssp.2017.11.038

  34. 34.

    H. Tanoue, M. Takenouchi, T. Yamashita, S. Wada, Z. Yatabe, S. Nagaoka, Y. Naka, Y. Nakamura, Phys. Stat. Solid. A Appl. Mater. Sci. (2017). https://doi.org/10.1002/pssa.201600603

  35. 35.

    H. Tanoue, T. Taniguchi, S. Wada, S. Yamamoto, S. Nakamura, Y. Naka, H. Yoshikawa, M. Munekata, S. Nagaoka, Y. Nakamura, Appl. Phys. Express (2015). https://doi.org/10.7567/apex.8.125502

  36. 36.

    H.L. Ma, Z.W. Liu, D.C. Zeng, M.L. Zhong, H.Y. Yu, E. Mikmekova, Appl. Surf. Sci. 283, 1006 (2013). https://doi.org/10.1016/j.apsusc.2013.07.060

  37. 37.

    K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2013). https://doi.org/10.7567/jjap.52.01ac11

  38. 38.

    K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2012). https://doi.org/10.1143/jjap.51.08hf05

  39. 39.

    E. Gungor, T. Gungor, Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/594971

  40. 40.

    S. Edinger, J. Bekacz, M. Richter, R. Hamid, R.A. Wibowo, A. Peic, T. Dimopoulos, Thin Solid Films 594, 238 (2015). https://doi.org/10.1016/j.tsf.2015.04.027

  41. 41.

    J. Cheng, R. Hu, Q. Wang, C.X. Zhang, Z. Xie, Z.W. Long, X. Yang, L. Li, Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/201472

  42. 42.

    J.H. Min, X.Y. Liang, B. Wang, Y. Zhao, Y. Guo, L.J. Wang, Adv. Mater. Res. 299–300, 475 (2011). https://doi.org/10.4028/www.scientific.net/AMR.299-300.475

  43. 43.

    E. Emil, G. Alkan, S. Gurmen, R. Rudolf, D. Jenko, B. Friedrich, Metals (2018). https://doi.org/10.3390/met8080569

  44. 44.

    W.G. Yang, Z. Yang, D. Li, X.Y. Zhang, Z.L. Zhou, S. Tian, Y.Q. Tong, C.H. Xia, M. Liu, L. Li, F. Wang, Mod Phys Lett B (2018). https://doi.org/10.1142/s0217984918503517

  45. 45.

    N. Zebbar, M. Trari, M. Doulache, A. Boughelout, L. Chabane, Appl. Surf. Sci. 292, 837 (2014). https://doi.org/10.1016/j.apsusc.2013.12.059

  46. 46.

    H. In Sub, P. Il-Kyu, Korean J Mater Res 27(11), 609 (2017)

  47. 47.

    A.J. Wang, H. Chen, T.F. Chen, Z.L. Wu, Y.L. Li, Y.S. Wang, J. Nanosci. Nanothech. 14(5), 3804 (2014). https://doi.org/10.1166/jnn.2014.7952

  48. 48.

    S. Benramache, B. Benhaoua, F. Chabane, A. Guettaf, Optik 124(18), 3221 (2013). https://doi.org/10.1016/j.ijleo.2012.10.001

  49. 49.

    N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Mater. Sci. Semicond. Process. 14(3–4), 229 (2011). https://doi.org/10.1016/j.mssp.2011.03.001

  50. 50.

    X. Zhao, J. Cheng, J. Mater. Sci. Mater. Electron. 27(3), 2676 (2016). https://doi.org/10.1007/s10854-015-4076-y

  51. 51.

    C. Biswas, Z. Ma, X.D. Zhu, T. Kawaharamura, K.L. Wang, Sol. Energy Mater. Sol. Cells 157, 1048 (2016). https://doi.org/10.1016/j.solmat.2016.08.022

  52. 52.

    H.-J. Jeon, S.-G. Lee, K.-S. Shin, S.-W. Kim, J.-S. Park, J. Alloys Compd. 614, 244 (2014)

  53. 53.

    S. Jongthammanurak, M. Witana, T. Cheawkul, C. Thanachayanont, Mater. Sci. Semicond. Process. 16(3), 625 (2013). https://doi.org/10.1016/j.mssp.2012.11.009

  54. 54.

    M.T. Htay, Y. Tani, Y. Hashimoto, K. Ito, J. Mater. Sci. Mater. Electron. 20, 341 (2009). https://doi.org/10.1007/s10854-008-9613-5

  55. 55.

    P. Singh, A. Kumar, Deepak, D. Kaur, J. Cryst. Growth 306(2), 303 (2007) https://doi.org/10.1016/j.jcrysgro.2007.05.023

  56. 56.

    Z.K. Zhang, J.M. Bian, J.C. Sun, X.W. Ma, Y.X. Wang, C.H. Cheng, Y.M. Luo, H.Z. Liu, Mater. Res. Bull. 47(9), 2685 (2012). https://doi.org/10.1016/j.materresbull.2012.05.010

  57. 57.

    K.H. Kim, K.S. Shin, B. Kumar, K.K. Kim, S.W. Kim, J. Nanoelectron. Optoelectron. 5(2), 247 (2010). https://doi.org/10.1166/jno.2010.1103

  58. 58.

    K.P. Liu, B.F. Yang, H.W. Yan, Z.P. Fu, M.W. Wen, Y.J. Chen, J. Zuo, Appl. Surf. Sci. 255(5), 2052 (2008). https://doi.org/10.1016/j.apsusc.2008.06.203

  59. 59.

    T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 47(6), 4669 (2008). https://doi.org/10.1143/jjap.47.4669

  60. 60.

    L. Munoz-Fernandez, G. Alkan, O. Milosevic, M.E. Rabanal, B. Friedrich, Catal. Today 321, 26 (2019). https://doi.org/10.1016/j.cattod.2017.11.029

  61. 61.

    M. Khammar, S. Guitouni, N. Attaf, M.S. Aida, A. Attaf, Ceram. Int. 43(13), 9919 (2017). https://doi.org/10.1016/j.ceramint.2017.04.179

  62. 62.

    A. Gahtar, A. Rahal, B. Benhaoua, S. Benramache, Optik 125(14), 3674 (2014). https://doi.org/10.1016/j.ijleo.2014.01.078

  63. 63.

    V.K. Jayaraman, A.M. Alvarez, M.D.O. Amador, Mater. Lett. 157, 169 (2015). https://doi.org/10.1016/j.matlet.2015.05.065

  64. 64.

    G. Kenanakis, N. Katsarakis, E. Koudoumas, Thin Solid Films 555, 62 (2014). https://doi.org/10.1016/j.tsf.2013.10.015

  65. 65.

    G. Kenanakis, N. Katsarakis, Mater. Res. Bull. 60, 752 (2014). https://doi.org/10.1016/j.materresbull.2014.09.060

  66. 66.

    O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Mater. Chem. Phys. 148(3), 712 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.039

  67. 67.

    M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311(20), 4499 (2009). https://doi.org/10.1016/j.jcrysgro.2009.08.008

  68. 68.

    Y. Benkhetta, A. Attaf, H. Saidi, A. Bouhdjar, H. Benjdidi, I.B. Kherchachi, M. Nouadji, N. Lehraki, Optik 127(5), 3005 (2016). https://doi.org/10.1016/j.ijleo.2015.11.236

  69. 69.

    Y. Aoun, B. Benhaoua, S. Benramache, B. Gasmi, Optik 126(20), 2481 (2015). https://doi.org/10.1016/j.ijleo.2015.06.025

  70. 70.

    B. Wang, J.H. Min, Y. Zhao, W.B. Sang, C.J. Wang, Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3134486

  71. 71.

    S. Sali, M. Boumaour, M. Kechouane, S. Kermadi, F. Aitamar, Phys. B Cond. Mater. 407(13), 2626 (2012). https://doi.org/10.1016/j.physb.2012.04.009

  72. 72.

    K. Robbie, M.J. Brett, J. Vac. Sci. Thech. A 15(3), 1460 (1997). https://doi.org/10.1116/1.580562

  73. 73.

    F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Thin Solid Films 628, 36 (2017). https://doi.org/10.1016/j.tsf.2017.02.044

  74. 74.

    O. Gracia-Martinez, R.M. Rojas, E. Vila, J.L. Martin de Vidales, Solid State Ionics 63, 442 (1993)

  75. 75.

    Y. Zhao, D. Ye, G.-C. Wang, T.-M. Lu, Designing nanostructures by glancing angle deposition. SPIE (2003)

  76. 76.

    Y.E. Lee, S.G. Kim, Y.J. Kim, H.J. Kim, J. Vac. Sci. Thech. A 15(3), 1194 (1997). https://doi.org/10.1116/1.580592

  77. 77.

    K. Robbie, M.J. Brett, A. Lakhtakia, Nature 384(6610), 616 (1996). https://doi.org/10.1038/384616a0

  78. 78.

    A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, T. Karabacak, Thin Solid Films 589, 764 (2015). https://doi.org/10.1016/j.tsf.2015.06.058

  79. 79.

    J. Chu, X. Peng, M. Sajjad, B. Yang, P.X. Feng, Thin Solid Films 520(9), 3493 (2012). https://doi.org/10.1016/j.tsf.2011.12.066

  80. 80.

    T. Karabacak, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Thech. A 22(4), 1778 (2004). https://doi.org/10.1116/1.1743178

  81. 81.

    W. Tang, Preparation Principle, Technology and Application of Thin Film Materials (Metallurgical Industry Press, Beijing, 2003)

  82. 82.

    S.-H. Hu, Y.-C. Chen, C.-C. Hwang, C.-H. Peng, D.-C. Gong, J. Alloys Compd. 500(2), L17 (2010)

  83. 83.

    P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12(5), 323 (2002)

  84. 84.

    R.N. Tait, T. Smy, M.J. Brett, Thin Solid Films 226(2), 196 (1993). https://doi.org/10.1016/0040-6090(93)90378-3

  85. 85.

    J.M. LaForge, M.T. Taschuk, M.J. Brett, Thin Solid Films 519(11), 3530 (2011). https://doi.org/10.1016/j.tsf.2011.01.241

  86. 86.

    A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Prog. Mater. Sci. 76, 59 (2016). https://doi.org/10.1016/j.pmatsci.2015.06.003

Download references

Acknowledgement

The financial support of Research and Technology Council of the Hakim Sabzevari University is greatly acknowledged.

Author information

Correspondence to Mohammad Zirak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5983 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alehdaghi, H., Kazemi, M. & Zirak, M. Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation. Appl. Phys. A 126, 103 (2020). https://doi.org/10.1007/s00339-020-3295-0

Download citation

Keywords

  • ZnO thin film
  • Oblique angle
  • Ultrasonic mist vapor deposition
  • Different morphologies