Advertisement

Applied Physics A

, 126:103 | Cite as

Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation

  • Hassan Alehdaghi
  • Maziyar Kazemi
  • Mohammad ZirakEmail author
Article

Abstract

Ultrasonic mist vapor deposition (UMVD) is a widely used facile technique to prepare ZnO thin films. The surface properties of prepared thin films can be tuned via easily controllable UMVD deposition parameters. Herein, we utilized an oblique angle (OA) geometry in UMVD system named as OA-UMVD. The angle between incident flow and substrate (θs) was changed from 0° to 45°. Alteration of θs as well as substrate temperature (Ts) resulted in the deposition of ZnO thin films with different morphologies. For mild nozzle–substrate distance (D = 3 cm), fine vertical ZnO nanosheets with length of 123 nm and thickness of 23 nm were obtained for low Ts (330 °C) and small θs (≈ 0°). By increasing both Ts and θs, ZnO nanorods gradually appeared on the surface. Both nozzle–substrate distance (D) and Ts showed similar effect on deposition rate (Rd), and Rd decreased by increase of D and Ts, while deposition rate increased for larger θs. Confocal microscopy results revealed that using low Ts (330 °C), short distance (D = 1.5 cm) and large θs (45°) resulted in high macroscopic surface roughness (MRs) of 98 nm, while high Ts (500 °C), long D (5 cm) and small θs (≈ 0) created compact and smooth surface with low MRs of 5 nm, in accordance with transmittance results. The ZnO wurtzite crystal structure was approved via X-ray diffraction patterns. The crystallite size in the layers was affected only by Ts, and θs had no significant effect on the layers’ crystallinity. Obtaining different ZnO nanostructures with different MRs via easily and accurately controllable growth parameters is a great advantage for our employed OA-UMVD system, which could be used to prepare ZnO thin films with desired morphologies for widespread application fields.

Keywords

ZnO thin film Oblique angle Ultrasonic mist vapor deposition Different morphologies 

Notes

Acknowledgement

The financial support of Research and Technology Council of the Hakim Sabzevari University is greatly acknowledged.

Supplementary material

339_2020_3295_MOESM1_ESM.docx (5.8 mb)
Supplementary file1 (DOCX 5983 kb)

References

  1. 1.
    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, J. Jang, H. Zare, Mater. Chem. Phys. 204, 262 (2018).  https://doi.org/10.1016/j.matchemphys.2017.10.051 CrossRefGoogle Scholar
  2. 2.
    Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127(20), 10102 (2016).  https://doi.org/10.1016/j.ijleo.2016.08.012 ADSCrossRefGoogle Scholar
  3. 3.
    M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45(4), 2197 (2019).  https://doi.org/10.1007/s11164-018-03729-5 CrossRefGoogle Scholar
  4. 4.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016).  https://doi.org/10.1016/j.tsf.2015.12.064 ADSCrossRefGoogle Scholar
  5. 5.
    P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5(6), 5158 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Benosman, Z. Dridi, Y. Al-Douri, B. Bouhafs, Int. J. Mod. Phys. B 30(31), 1650225 (2016).  https://doi.org/10.1142/s0217979216502258 ADSCrossRefGoogle Scholar
  7. 7.
    W. Zhang, S. Chang, S. Yao, H. Wang, J. Electron. Mater. 48(8), 4895 (2019).  https://doi.org/10.1007/s11664-019-07278-4 ADSCrossRefGoogle Scholar
  8. 8.
    M. Ahmadi, M. Shafiey Dehaj, S. Ghazanfarpour, S. Ghazanfarpour, Appl. Phys. A 125(9), 604 (2019).  https://doi.org/10.1007/s00339-019-2882-4 ADSCrossRefGoogle Scholar
  9. 9.
    F. Liu, X. Chen, X. Wang, Y. Han, X. Song, J. Tian, X. He, H. Cui, Sens. Actuators B Chem. 291, 155 (2019).  https://doi.org/10.1016/j.snb.2019.04.009 CrossRefGoogle Scholar
  10. 10.
    F. Khosravi-Nejad, M. Teimouri, S. Jafari Marandi, M. Shariati, Appl. Phys. A 125(9), 616 (2019).  https://doi.org/10.1007/s00339-019-2890-4 ADSCrossRefGoogle Scholar
  11. 11.
    N.N. Jandow, A.K. Elttayef, A.F. Majied, N.F. Habubi, N. Saadeddin, Y. Al-Douri, A.I.P. Conf, Proc. 2083(1), 020003 (2019).  https://doi.org/10.1063/1.5094306 CrossRefGoogle Scholar
  12. 12.
    N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik 125(11), 2560 (2014).  https://doi.org/10.1016/j.ijleo.2013.10.023 ADSCrossRefGoogle Scholar
  13. 13.
    M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, J. Alloys Compd. 590, 507 (2014).  https://doi.org/10.1016/j.jallcom.2013.12.158 CrossRefGoogle Scholar
  14. 14.
    M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, Appl. Surf. Sci. 273, 391 (2013).  https://doi.org/10.1016/j.apsusc.2013.02.050 ADSCrossRefGoogle Scholar
  15. 15.
    M. Zirak, H. Oveisi, J. Lin, Y. Bando, A.A. Alshehri, J. Kim, Y. Ide, M.S.A. Hossain, V. Malgras, Y. Yamauchi, Bull. Chem. Soc. Jpn. 91(10), 1556 (2018).  https://doi.org/10.1246/bcsj.20180108 CrossRefGoogle Scholar
  16. 16.
    C. Ma, Z. Liu, Z. Tong, C. Han, Q. Cai, Appl. Phys. A 125(7), 451 (2019).  https://doi.org/10.1007/s00339-019-2742-2 ADSCrossRefGoogle Scholar
  17. 17.
    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, Org. Electron. 16, 87 (2015).  https://doi.org/10.1016/j.orgel.2014.10.038 CrossRefGoogle Scholar
  18. 18.
    J.F.S. Fernando, C. Zhang, K.L. Firestein, J.Y. Nerkar, D.V. Golberg, J. Mater. Chem. A 7(14), 8460 (2019).  https://doi.org/10.1039/C8TA12511B CrossRefGoogle Scholar
  19. 19.
    H. Sun, S.-C. Chen, C.-H. Wang, Y.-W. Lin, C.-K. Wen, T.-H. Chuang, X. Wang, S.-S. Lin, M.-J. Dai, Surf. Coat. Technol. 359, 390 (2019).  https://doi.org/10.1016/j.surfcoat.2018.10.105 CrossRefGoogle Scholar
  20. 20.
    A. Mameli, B. Karasulu, M.A. Verheijen, B. Barcones, B. Macco, A.J.M. Mackus, W.M.M.E. Kessels, F. Roozeboom, Chem. Mater. 31(4), 1250 (2019).  https://doi.org/10.1021/acs.chemmater.8b03165 CrossRefGoogle Scholar
  21. 21.
    C.-Q. Luo, F.C.-C. Ling, M.A. Rahman, M. Phillips, C. Ton-That, C. Liao, K. Shih, J. Lin, H.W. Tam, A.B. Djurišić, S.-P. Wang, Appl. Surf. Sci. 483, 1129 (2019).  https://doi.org/10.1016/j.apsusc.2019.03.228 ADSCrossRefGoogle Scholar
  22. 22.
    R. Bhujel, S. Rai, B.P. Swain, Mater. Sci. Semicond. Process. 102, 104592 (2019).  https://doi.org/10.1016/j.mssp.2019.104592 CrossRefGoogle Scholar
  23. 23.
    R. Al-Gaashani, S. Radiman, A. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39(3), 2283 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Steiger, J. Zhang, K. Harrabi, I.A. Hussein, J.M. Downing, M.A. McLachlan, Thin Solid Films 645, 417 (2018).  https://doi.org/10.1016/j.tsf.2017.11.021 ADSCrossRefGoogle Scholar
  25. 25.
    M. Pérez-González, S.A. Tomás, J. Santoyo-Salazar, S. Gallardo-Hernández, M.M. Tellez-Cruz, O. Solorza-Feria, J. Alloys Compd. 779, 908 (2019).  https://doi.org/10.1016/j.jallcom.2018.11.302 CrossRefGoogle Scholar
  26. 26.
    M. Kashif, Y. Al-Douri, U. Hashim, M. Ali, S. Ali, M. Willander, Micro. Nano Lett. 7(2), 163 (2012)Google Scholar
  27. 27.
    K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Result Phys. 7, 1190 (2017).  https://doi.org/10.1016/j.rinp.2017.03.013 ADSCrossRefGoogle Scholar
  28. 28.
    N. Hassan, M. Hashim, Y. Al-Douri, K. Al-Heuseen, Int. J. Electrochem. Sci. 7, 4625 (2012)Google Scholar
  29. 29.
    Y.J. Onofre, A.C. Catto, S. Bernardini, T. Fiorido, K. Aguir, E. Longo, V.R. Mastelaro, L.F. da Silva, M.P.F. de Godoy, Appl. Surf. Sci. 478, 347 (2019).  https://doi.org/10.1016/j.apsusc.2019.01.197 ADSCrossRefGoogle Scholar
  30. 30.
    H. Alehdaghi, M. Zirak, J. Mater. Sci. Mater. Electron. 30(3), 2706 (2019).  https://doi.org/10.1007/s10854-018-0546-3 CrossRefGoogle Scholar
  31. 31.
    S. Benramache, Y. Aoun, A. Charef, B. Benhaoua, S. Lakel, Inorg. Nano–Micro Chem. 49(6), 177 (2019).  https://doi.org/10.1080/24701556.2019.1624568 CrossRefGoogle Scholar
  32. 32.
    Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45(32), L857 (2006).  https://doi.org/10.1143/jjap.45.l857 ADSCrossRefGoogle Scholar
  33. 33.
    V. Mata, A. Maldonado, O.M. de la Luz, Mater. Sci. Semicond. Process. 75, 288 (2018).  https://doi.org/10.1016/j.mssp.2017.11.038 CrossRefGoogle Scholar
  34. 34.
    H. Tanoue, M. Takenouchi, T. Yamashita, S. Wada, Z. Yatabe, S. Nagaoka, Y. Naka, Y. Nakamura, Phys. Stat. Solid. A Appl. Mater. Sci. (2017).  https://doi.org/10.1002/pssa.201600603 CrossRefGoogle Scholar
  35. 35.
    H. Tanoue, T. Taniguchi, S. Wada, S. Yamamoto, S. Nakamura, Y. Naka, H. Yoshikawa, M. Munekata, S. Nagaoka, Y. Nakamura, Appl. Phys. Express (2015).  https://doi.org/10.7567/apex.8.125502 CrossRefGoogle Scholar
  36. 36.
    H.L. Ma, Z.W. Liu, D.C. Zeng, M.L. Zhong, H.Y. Yu, E. Mikmekova, Appl. Surf. Sci. 283, 1006 (2013).  https://doi.org/10.1016/j.apsusc.2013.07.060 ADSCrossRefGoogle Scholar
  37. 37.
    K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2013).  https://doi.org/10.7567/jjap.52.01ac11 CrossRefGoogle Scholar
  38. 38.
    K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2012).  https://doi.org/10.1143/jjap.51.08hf05 CrossRefGoogle Scholar
  39. 39.
    E. Gungor, T. Gungor, Adv. Mater. Sci. Eng. (2012).  https://doi.org/10.1155/2012/594971 CrossRefGoogle Scholar
  40. 40.
    S. Edinger, J. Bekacz, M. Richter, R. Hamid, R.A. Wibowo, A. Peic, T. Dimopoulos, Thin Solid Films 594, 238 (2015).  https://doi.org/10.1016/j.tsf.2015.04.027 ADSCrossRefGoogle Scholar
  41. 41.
    J. Cheng, R. Hu, Q. Wang, C.X. Zhang, Z. Xie, Z.W. Long, X. Yang, L. Li, Int. J. Photoenergy (2015).  https://doi.org/10.1155/2015/201472 CrossRefGoogle Scholar
  42. 42.
    J.H. Min, X.Y. Liang, B. Wang, Y. Zhao, Y. Guo, L.J. Wang, Adv. Mater. Res. 299–300, 475 (2011).  https://doi.org/10.4028/www.scientific.net/AMR.299-300.475 CrossRefGoogle Scholar
  43. 43.
    E. Emil, G. Alkan, S. Gurmen, R. Rudolf, D. Jenko, B. Friedrich, Metals (2018).  https://doi.org/10.3390/met8080569 CrossRefGoogle Scholar
  44. 44.
    W.G. Yang, Z. Yang, D. Li, X.Y. Zhang, Z.L. Zhou, S. Tian, Y.Q. Tong, C.H. Xia, M. Liu, L. Li, F. Wang, Mod Phys Lett B (2018).  https://doi.org/10.1142/s0217984918503517 CrossRefGoogle Scholar
  45. 45.
    N. Zebbar, M. Trari, M. Doulache, A. Boughelout, L. Chabane, Appl. Surf. Sci. 292, 837 (2014).  https://doi.org/10.1016/j.apsusc.2013.12.059 ADSCrossRefGoogle Scholar
  46. 46.
    H. In Sub, P. Il-Kyu, Korean J Mater Res 27(11), 609 (2017)CrossRefGoogle Scholar
  47. 47.
    A.J. Wang, H. Chen, T.F. Chen, Z.L. Wu, Y.L. Li, Y.S. Wang, J. Nanosci. Nanothech. 14(5), 3804 (2014).  https://doi.org/10.1166/jnn.2014.7952 CrossRefGoogle Scholar
  48. 48.
    S. Benramache, B. Benhaoua, F. Chabane, A. Guettaf, Optik 124(18), 3221 (2013).  https://doi.org/10.1016/j.ijleo.2012.10.001 ADSCrossRefGoogle Scholar
  49. 49.
    N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Mater. Sci. Semicond. Process. 14(3–4), 229 (2011).  https://doi.org/10.1016/j.mssp.2011.03.001 CrossRefGoogle Scholar
  50. 50.
    X. Zhao, J. Cheng, J. Mater. Sci. Mater. Electron. 27(3), 2676 (2016).  https://doi.org/10.1007/s10854-015-4076-y CrossRefGoogle Scholar
  51. 51.
    C. Biswas, Z. Ma, X.D. Zhu, T. Kawaharamura, K.L. Wang, Sol. Energy Mater. Sol. Cells 157, 1048 (2016).  https://doi.org/10.1016/j.solmat.2016.08.022 CrossRefGoogle Scholar
  52. 52.
    H.-J. Jeon, S.-G. Lee, K.-S. Shin, S.-W. Kim, J.-S. Park, J. Alloys Compd. 614, 244 (2014)CrossRefGoogle Scholar
  53. 53.
    S. Jongthammanurak, M. Witana, T. Cheawkul, C. Thanachayanont, Mater. Sci. Semicond. Process. 16(3), 625 (2013).  https://doi.org/10.1016/j.mssp.2012.11.009 CrossRefGoogle Scholar
  54. 54.
    M.T. Htay, Y. Tani, Y. Hashimoto, K. Ito, J. Mater. Sci. Mater. Electron. 20, 341 (2009).  https://doi.org/10.1007/s10854-008-9613-5 CrossRefGoogle Scholar
  55. 55.
    P. Singh, A. Kumar, Deepak, D. Kaur, J. Cryst. Growth 306(2), 303 (2007) https://doi.org/10.1016/j.jcrysgro.2007.05.023 ADSCrossRefGoogle Scholar
  56. 56.
    Z.K. Zhang, J.M. Bian, J.C. Sun, X.W. Ma, Y.X. Wang, C.H. Cheng, Y.M. Luo, H.Z. Liu, Mater. Res. Bull. 47(9), 2685 (2012).  https://doi.org/10.1016/j.materresbull.2012.05.010 CrossRefGoogle Scholar
  57. 57.
    K.H. Kim, K.S. Shin, B. Kumar, K.K. Kim, S.W. Kim, J. Nanoelectron. Optoelectron. 5(2), 247 (2010).  https://doi.org/10.1166/jno.2010.1103 CrossRefGoogle Scholar
  58. 58.
    K.P. Liu, B.F. Yang, H.W. Yan, Z.P. Fu, M.W. Wen, Y.J. Chen, J. Zuo, Appl. Surf. Sci. 255(5), 2052 (2008).  https://doi.org/10.1016/j.apsusc.2008.06.203 ADSCrossRefGoogle Scholar
  59. 59.
    T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 47(6), 4669 (2008).  https://doi.org/10.1143/jjap.47.4669 ADSCrossRefGoogle Scholar
  60. 60.
    L. Munoz-Fernandez, G. Alkan, O. Milosevic, M.E. Rabanal, B. Friedrich, Catal. Today 321, 26 (2019).  https://doi.org/10.1016/j.cattod.2017.11.029 CrossRefGoogle Scholar
  61. 61.
    M. Khammar, S. Guitouni, N. Attaf, M.S. Aida, A. Attaf, Ceram. Int. 43(13), 9919 (2017).  https://doi.org/10.1016/j.ceramint.2017.04.179 CrossRefGoogle Scholar
  62. 62.
    A. Gahtar, A. Rahal, B. Benhaoua, S. Benramache, Optik 125(14), 3674 (2014).  https://doi.org/10.1016/j.ijleo.2014.01.078 ADSCrossRefGoogle Scholar
  63. 63.
    V.K. Jayaraman, A.M. Alvarez, M.D.O. Amador, Mater. Lett. 157, 169 (2015).  https://doi.org/10.1016/j.matlet.2015.05.065 CrossRefGoogle Scholar
  64. 64.
    G. Kenanakis, N. Katsarakis, E. Koudoumas, Thin Solid Films 555, 62 (2014).  https://doi.org/10.1016/j.tsf.2013.10.015 ADSCrossRefGoogle Scholar
  65. 65.
    G. Kenanakis, N. Katsarakis, Mater. Res. Bull. 60, 752 (2014).  https://doi.org/10.1016/j.materresbull.2014.09.060 CrossRefGoogle Scholar
  66. 66.
    O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Mater. Chem. Phys. 148(3), 712 (2014).  https://doi.org/10.1016/j.matchemphys.2014.08.039 CrossRefGoogle Scholar
  67. 67.
    M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311(20), 4499 (2009).  https://doi.org/10.1016/j.jcrysgro.2009.08.008 ADSCrossRefGoogle Scholar
  68. 68.
    Y. Benkhetta, A. Attaf, H. Saidi, A. Bouhdjar, H. Benjdidi, I.B. Kherchachi, M. Nouadji, N. Lehraki, Optik 127(5), 3005 (2016).  https://doi.org/10.1016/j.ijleo.2015.11.236 ADSCrossRefGoogle Scholar
  69. 69.
    Y. Aoun, B. Benhaoua, S. Benramache, B. Gasmi, Optik 126(20), 2481 (2015).  https://doi.org/10.1016/j.ijleo.2015.06.025 ADSCrossRefGoogle Scholar
  70. 70.
    B. Wang, J.H. Min, Y. Zhao, W.B. Sang, C.J. Wang, Appl. Phys. Lett. (2009).  https://doi.org/10.1063/1.3134486 CrossRefGoogle Scholar
  71. 71.
    S. Sali, M. Boumaour, M. Kechouane, S. Kermadi, F. Aitamar, Phys. B Cond. Mater. 407(13), 2626 (2012).  https://doi.org/10.1016/j.physb.2012.04.009 ADSCrossRefGoogle Scholar
  72. 72.
    K. Robbie, M.J. Brett, J. Vac. Sci. Thech. A 15(3), 1460 (1997).  https://doi.org/10.1116/1.580562 ADSCrossRefGoogle Scholar
  73. 73.
    F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Thin Solid Films 628, 36 (2017).  https://doi.org/10.1016/j.tsf.2017.02.044 ADSCrossRefGoogle Scholar
  74. 74.
    O. Gracia-Martinez, R.M. Rojas, E. Vila, J.L. Martin de Vidales, Solid State Ionics 63, 442 (1993)CrossRefGoogle Scholar
  75. 75.
    Y. Zhao, D. Ye, G.-C. Wang, T.-M. Lu, Designing nanostructures by glancing angle deposition. SPIE (2003)Google Scholar
  76. 76.
    Y.E. Lee, S.G. Kim, Y.J. Kim, H.J. Kim, J. Vac. Sci. Thech. A 15(3), 1194 (1997).  https://doi.org/10.1116/1.580592 ADSCrossRefGoogle Scholar
  77. 77.
    K. Robbie, M.J. Brett, A. Lakhtakia, Nature 384(6610), 616 (1996).  https://doi.org/10.1038/384616a0 ADSCrossRefGoogle Scholar
  78. 78.
    A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, T. Karabacak, Thin Solid Films 589, 764 (2015).  https://doi.org/10.1016/j.tsf.2015.06.058 ADSCrossRefGoogle Scholar
  79. 79.
    J. Chu, X. Peng, M. Sajjad, B. Yang, P.X. Feng, Thin Solid Films 520(9), 3493 (2012).  https://doi.org/10.1016/j.tsf.2011.12.066 ADSCrossRefGoogle Scholar
  80. 80.
    T. Karabacak, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Thech. A 22(4), 1778 (2004).  https://doi.org/10.1116/1.1743178 ADSCrossRefGoogle Scholar
  81. 81.
    W. Tang, Preparation Principle, Technology and Application of Thin Film Materials (Metallurgical Industry Press, Beijing, 2003)Google Scholar
  82. 82.
    S.-H. Hu, Y.-C. Chen, C.-C. Hwang, C.-H. Peng, D.-C. Gong, J. Alloys Compd. 500(2), L17 (2010)CrossRefGoogle Scholar
  83. 83.
    P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12(5), 323 (2002)CrossRefGoogle Scholar
  84. 84.
    R.N. Tait, T. Smy, M.J. Brett, Thin Solid Films 226(2), 196 (1993).  https://doi.org/10.1016/0040-6090(93)90378-3 ADSCrossRefGoogle Scholar
  85. 85.
    J.M. LaForge, M.T. Taschuk, M.J. Brett, Thin Solid Films 519(11), 3530 (2011).  https://doi.org/10.1016/j.tsf.2011.01.241 ADSCrossRefGoogle Scholar
  86. 86.
    A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Prog. Mater. Sci. 76, 59 (2016).  https://doi.org/10.1016/j.pmatsci.2015.06.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIslamic Republic of Iran

Personalised recommendations