Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films

  • 28 Accesses


In this study, hexagonal Cs0.32WO3 powders were synthesized by a simple solution-based chemical route. The experiment can be performed within a relatively short time and can easily produce large amounts of hexagonal Cs0.32WO3 powders. The CsxWO3 powders as synthesized and after heat treatment were characterized by X-ray diffraction, scanning electron microscopy, differential thermal and thermogravimetric analysis and Fourier transform infrared spectroscopy. CsxWO3 thin films were deposited by an electron beam evaporation method from sintered Cs0.32WO3 powders as the targets. The CsxWO3 films were annealed at different temperatures under Ar and Ar/H2 atmospheres. The effects of annealing on the microstructure, morphology and near-infrared (NIR) shielding properties of the Cs0.32WO3 films are discussed. The results show that the Cs0.32WO3 thin film specimen annealed for 500 °C in an Ar/H2 atmosphere has the highest transmittance (80%) in the visible light region and the lowest transmittance (42%) in the NIR region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Chem. Commun. 46, 2304 (2010)

  2. 2.

    B. Baloukas, J.M. Lamarre, L. Martinu, Sol. Energy Mater. Sol. Cells 95, 807 (2011)

  3. 3.

    L. Long, H. Ye, Y. Gao, R. Zou, Appl. Energy 136, 89 (2014)

  4. 4.

    C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars, Sol. Energy 63, 199 (1998)

  5. 5.

    R.D. Rauh, Electrochim Acta 44, 3165 (1999)

  6. 6.

    P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, ACS Appl. Mater Interfaces 3, 3658 (2011)

  7. 7.

    Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin Solid Films 519, 2280 (2011)

  8. 8.

    H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, Appl. Surf. Sci. 258, 8564 (2012)

  9. 9.

    K. Adachi, T. Asahi, J. Mater. Res. 27, 965 (2012)

  10. 10.

    M.R. Skokan, W.G. Moulton, R.C. Morris, Phys. Rev. B 20, 3670 (1979)

  11. 11.

    Y. Sato, M. Terauchi, M. Mukai, T. Kaneyama, K. Adachi, Ultramicroscopy 111, 1381 (2011)

  12. 12.

    Y. Sato, M. Terauchi, K. Adachi, J. Appl. Phys. 112, 074308 (2012)

  13. 13.

    J.D. Guo, M.S. Whittingham, Int. J. Mod. Phys. B 07, 4145 (1993)

  14. 14.

    B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, J. Solid State Chem. 29, 429 (1979)

  15. 15.

    C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Nanoscale 5, 6469 (2013)

  16. 16.

    F. Shi, J.X. Liu, X.L. Dong, Q. Xu, J.Y. Luo, H.C. Ma, J. Mater. Sci. Technol. 30, 342 (2014)

  17. 17.

    H. Takeda, K. Adachi, J. Am. Ceram. Soc. 90, 4059 (2007)

  18. 18.

    C.S. Guo, S. Yin, M. Yan, T. Sato, J. Mater. Chem. 21, 5099 (2011)

  19. 19.

    J.X. Liu, F. Shi, X.L. Dong, Q. Xu, S. Yin, T. Sato, Mater. Charact. 84, 182 (2013)

  20. 20.

    J.X. Liu, Y. Ando, X.L. Dong, F. Shi, S. Yin, K. Adachi, T. Chonan, A. Tanaka, T. Sato, J Solid State Chem. 183, 2456 (2010)

  21. 21.

    J.-X. Liu, F. Shi, X.-L. Dong, S.-H. Liu, C.-Y. Fan, S. Yin, T. Sato, Powder Technol. 270, 329 (2015)

  22. 22.

    J. Liu, J. Luo, F. Shi, S. Liu, C. Fan, Q. Xu, G. Shao, J. Solid State Chem. 221, 255 (2015)

  23. 23.

    J. Liu, Q. Xu, F. Shi, S. Liu, J. Luo, L. Bao, X. Feng, Appl. Surf. Sci. 309, 175 (2014)

  24. 24.

    H. Yang, Z. Ping, G. Niu, H. Jiang, Y. Long, Langmuir 15, 5382 (1999)

  25. 25.

    C.-T. Hsieh, H. Teng, W.-Y. Chen, Y.-S. Cheng, Carbon 48, 4219 (2010)

  26. 26.

    J.Y. Luo, S.Z. Deng, Y.T. Tao, F.L. Zhao, L.F. Zhu, L. Gong, J. Chen, N.S. Xu, J. Phys. Chem. C 113, 15877 (2009)

  27. 27.

    C. Guo, S. Yin, Q. Dong, T. Sato, CrystEngComm 14, 7727 (2012)

  28. 28.

    K. Adachi, Y. Ota, H. Tanaka, M. Okada, N. Oshimura, A. Tofuku, J. Appl. Phys. 114, 194304 (2013)

Download references


This work was financially supported by the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and the Ministry of Science and Technology (MOST 107-3017-F-006 -003) in Taiwan. The authors are grateful for the financial support this work received from the Ministry of Science and Technology of Taiwan, R.O.C., under Grant no. NSC106-2221-E-006-073-MY2.

Author information

Correspondence to Horng-Hwa Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Brahma, S., Lu, H. et al. Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films. Appl. Phys. A 126, 98 (2020). https://doi.org/10.1007/s00339-020-3291-4

Download citation


  • Cesium tungsten bronze
  • Near-infrared shielding
  • Optical properties
  • Solution-based chemical route
  • NIR shielding