Advertisement

Applied Physics A

, 126:98 | Cite as

Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films

  • Pin-Jhen Wu
  • Sanjaya Brahma
  • Horng-Hwa LuEmail author
  • Jow-Lay Huang
Article

Abstract

In this study, hexagonal Cs0.32WO3 powders were synthesized by a simple solution-based chemical route. The experiment can be performed within a relatively short time and can easily produce large amounts of hexagonal Cs0.32WO3 powders. The CsxWO3 powders as synthesized and after heat treatment were characterized by X-ray diffraction, scanning electron microscopy, differential thermal and thermogravimetric analysis and Fourier transform infrared spectroscopy. CsxWO3 thin films were deposited by an electron beam evaporation method from sintered Cs0.32WO3 powders as the targets. The CsxWO3 films were annealed at different temperatures under Ar and Ar/H2 atmospheres. The effects of annealing on the microstructure, morphology and near-infrared (NIR) shielding properties of the Cs0.32WO3 films are discussed. The results show that the Cs0.32WO3 thin film specimen annealed for 500 °C in an Ar/H2 atmosphere has the highest transmittance (80%) in the visible light region and the lowest transmittance (42%) in the NIR region.

Keywords

Cesium tungsten bronze Near-infrared shielding Optical properties Solution-based chemical route NIR shielding 

Notes

Acknowledgements

This work was financially supported by the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and the Ministry of Science and Technology (MOST 107-3017-F-006 -003) in Taiwan. The authors are grateful for the financial support this work received from the Ministry of Science and Technology of Taiwan, R.O.C., under Grant no. NSC106-2221-E-006-073-MY2.

References

  1. 1.
    W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Chem. Commun. 46, 2304 (2010)CrossRefGoogle Scholar
  2. 2.
    B. Baloukas, J.M. Lamarre, L. Martinu, Sol. Energy Mater. Sol. Cells 95, 807 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Long, H. Ye, Y. Gao, R. Zou, Appl. Energy 136, 89 (2014)CrossRefGoogle Scholar
  4. 4.
    C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars, Sol. Energy 63, 199 (1998)Google Scholar
  5. 5.
    R.D. Rauh, Electrochim Acta 44, 3165 (1999)CrossRefGoogle Scholar
  6. 6.
    P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, ACS Appl. Mater Interfaces 3, 3658 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin Solid Films 519, 2280 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, Appl. Surf. Sci. 258, 8564 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    K. Adachi, T. Asahi, J. Mater. Res. 27, 965 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M.R. Skokan, W.G. Moulton, R.C. Morris, Phys. Rev. B 20, 3670 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Sato, M. Terauchi, M. Mukai, T. Kaneyama, K. Adachi, Ultramicroscopy 111, 1381 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Sato, M. Terauchi, K. Adachi, J. Appl. Phys. 112, 074308 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J.D. Guo, M.S. Whittingham, Int. J. Mod. Phys. B 07, 4145 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, J. Solid State Chem. 29, 429 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Nanoscale 5, 6469 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    F. Shi, J.X. Liu, X.L. Dong, Q. Xu, J.Y. Luo, H.C. Ma, J. Mater. Sci. Technol. 30, 342 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Takeda, K. Adachi, J. Am. Ceram. Soc. 90, 4059 (2007)Google Scholar
  18. 18.
    C.S. Guo, S. Yin, M. Yan, T. Sato, J. Mater. Chem. 21, 5099 (2011)CrossRefGoogle Scholar
  19. 19.
    J.X. Liu, F. Shi, X.L. Dong, Q. Xu, S. Yin, T. Sato, Mater. Charact. 84, 182 (2013)CrossRefGoogle Scholar
  20. 20.
    J.X. Liu, Y. Ando, X.L. Dong, F. Shi, S. Yin, K. Adachi, T. Chonan, A. Tanaka, T. Sato, J Solid State Chem. 183, 2456 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J.-X. Liu, F. Shi, X.-L. Dong, S.-H. Liu, C.-Y. Fan, S. Yin, T. Sato, Powder Technol. 270, 329 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Liu, J. Luo, F. Shi, S. Liu, C. Fan, Q. Xu, G. Shao, J. Solid State Chem. 221, 255 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J. Liu, Q. Xu, F. Shi, S. Liu, J. Luo, L. Bao, X. Feng, Appl. Surf. Sci. 309, 175 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    H. Yang, Z. Ping, G. Niu, H. Jiang, Y. Long, Langmuir 15, 5382 (1999)CrossRefGoogle Scholar
  25. 25.
    C.-T. Hsieh, H. Teng, W.-Y. Chen, Y.-S. Cheng, Carbon 48, 4219 (2010)CrossRefGoogle Scholar
  26. 26.
    J.Y. Luo, S.Z. Deng, Y.T. Tao, F.L. Zhao, L.F. Zhu, L. Gong, J. Chen, N.S. Xu, J. Phys. Chem. C 113, 15877 (2009)CrossRefGoogle Scholar
  27. 27.
    C. Guo, S. Yin, Q. Dong, T. Sato, CrystEngComm 14, 7727 (2012)CrossRefGoogle Scholar
  28. 28.
    K. Adachi, Y. Ota, H. Tanaka, M. Okada, N. Oshimura, A. Tofuku, J. Appl. Phys. 114, 194304 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Pin-Jhen Wu
    • 1
  • Sanjaya Brahma
    • 1
  • Horng-Hwa Lu
    • 2
    Email author
  • Jow-Lay Huang
    • 1
    • 3
    • 4
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan (ROC)
  2. 2.Department of Mechanical EngineeringNational Chin-Yi University of TechnologyTaichungTaiwan (ROC)
  3. 3.Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainanTaiwan (ROC)
  4. 4.Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung UniversityTainanTaiwan (ROC)

Personalised recommendations