Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Strain-tunable band alignment of blue phosphorus–WX2 (X = S/Se/Te) vertical heterostructures: from first-principles study

  • 21 Accesses


In the scope of two-dimensional (2D) material study, blue phosphorus (BP) is a new graphene-like layered structure that has been successfully synthesized in the experiment after it was theoretically proved to be thermostable. These 2D structured functional materials have great potential in the next-generation nanoscale electronic devices for their unique features. Here, we composite BP and monolayer WX2 (X = S/Se/Te) based on van der Waals force (vdW) interaction to obtain well-defined type-II band alignment heterostructures. A systematic theoretic study was conducted to explore the interlayer coupling effects and the bands’ re-alignment of the BP–WX2 heterostructure after the strain was applied. Nowadays, many researches have proved that 2D materials can be used to degrade pollutants or used as a potential photovoltaic cell material to obtain high performance. We here twist BP and WX2 (X = S/Se/Te) into different angles to lay a theoretical framework on the band alignment and carriers’ separation. It reveals that the electronic properties of freestanding BP and WX2 can be roughly preserved in the corresponding heterostructures. Upon applying strain, band alignment exhibits significant adjustability through varying external strain. The heterostructures are type-II in a certain strain range, within which the carriers can be effectively separated spatially. These heterostructures undergo a transition from semiconductor to metal when a certain strain is imposed. This work not only provides a deep insight into the construction of heterostructures, but presents a new possibility for strain engineering that is both flexible and feasible and can be used for diverse applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    X. Jiang, X. Zhang, F. Xiong, Z. Hua, Z. Wang, S. Yang, Room temperature ferromagnetism in transition metal-doped black phosphorous. Appl. Phys. Lett. 112, 192105 (2018)

  2. 2.

    X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015)

  3. 3.

    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)

  4. 4.

    Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)

  5. 5.

    Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.F. Yu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015)

  6. 6.

    J. Guan, Z. Zhu, D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 046804 (2014)

  7. 7.

    B. You, X. Wang, W. Mi, Prediction of spin–orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures. Phys. Chem. Chem. Phys. 17, 31253–31259 (2015)

  8. 8.

    M. Tahir, U. Schwingenschlögl, Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013)

  9. 9.

    B. You, X. Wang, Z. Zheng, W. Mi, Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Phys. Chem. Chem. Phys. 18, 7381–7388 (2016)

  10. 10.

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)

  11. 11.

    Q. Gao, X. Li, M. Li, T. Wang, X. Huang, Q. Zhang, J. Li, Y. Jia, C. Xia, Realization of larger band gap opening of graphene and type-I band alignment with BN intercalation layer in graphene/MX2 heterojunctions. Phys. Rev. B 100, 115439 (2019)

  12. 12.

    C. Xia, J. Du, M. Li, X. Li, X. Zhao, T. Wang, J. Li, Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys. Rev. Appl. 10, 054064 (2018)

  13. 13.

    J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349 (2014)

  14. 14.

    J.M. Langer, C. Delerue, M. Lannoo, H. Heinrich, Transition-metal impurities in semiconductors and heterojunction band lineups. Phys. Rev. B 38, 7723 (1988)

  15. 15.

    A.T. Hanbicki, H.-J. Chuang, M.R. Rosenberger, C.S. Hellberg, S.V. Sivaram, K.M. McCreary, I.I. Mazin, B.T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719–4726 (2018)

  16. 16.

    M. Basu, N. Garg, A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. J. Mater. Chem. A 2, 7517–7525 (2014)

  17. 17.

    L.-C. Tien, J.-L. Shih, Type-II α-In2S3/In2O3 nanowire heterostructures: evidence of enhanced photo-induced charge separation efficiency. RSC Adv. 6, 12561–12570 (2016)

  18. 18.

    N. Song, Y. Wang, S. Ding, Y. Yang, J. Zhang, B. Xu, L. Yi, Y. Jia, The hydrogen storage behavior of Li-decorated monolayer WS2: a first-principles study. Vacuum 117, 63–67 (2015)

  19. 19.

    Y. Yu, S.-Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L. Cao, Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014)

  20. 20.

    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

  21. 21.

    S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.S. Kang, J. Baik, H.J. Shin, Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011)

  22. 22.

    C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)

  23. 23.

    D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014)

  24. 24.

    S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012)

  25. 25.

    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

  26. 26.

    A. Samad, A. Shafique, Y.-H. Shin, Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2. Nanotechnology 28, 175401 (2017)

  27. 27.

    A. Samad, M. Noor-A-Alam, Y.-H. Shin, First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A 4, 14316–14323 (2016)

  28. 28.

    B. Modak, S.K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: a hybrid density functional study. J. Phys. Chem. C 119, 23503–23514 (2015)

  29. 29.

    T. Jing, Y. Dai, W. Wei, X. Ma, B. Huang, Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M= W, Mo). Phys. Chem. Chem. Phys. 16, 18596–18604 (2014)

  30. 30.

    S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12, 751–758 (2017)

  31. 31.

    J. Zhu, S. Xu, J. Ning, D. Wang, J. Zhang, Y. Hao, Gate-Tunable electronic structure of black phosphorus/HfS2 P-N van der Waals heterostructure with uniformly anisotropic band dispersion. J. Phys. Chem. C 121, 24845–24852 (2017)

  32. 32.

    K. Ren, J. Yu, W. Tang, A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg(OH)2 used as a promising photocatalyst for water splitting: a first-principles calculation. J. Appl. Phys. 126, 065701 (2019)

  33. 33.

    K. Ren, C. Ren, Y. Luo, Y. Xu, J. Yu, W. Tang, M. Sun, Using van der Waals heterostructures based on two-dimensional blue phosphorus and XC (X=Ge, Si) for water-splitting photocatalysis: a first-principles study. Phys. Chem. Chem. Phys. 21, 9949–9956 (2019)

  34. 34.

    J. Xiao, M. Long, C.-S. Deng, J. He, L.-L. Cui, H. Xu, Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: a first-principles study. J. Phys. Chem. C 120, 4638–4646 (2016)

  35. 35.

    L. Huang, J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals pn heterostructure. Appl. Phys. Lett. 108, 083101 (2016)

  36. 36.

    J. Yan, P. Li, Y. Ji, H. Bian, Y. Li, S.F. Liu, Earth-abundant elements doping for robust and stable solar-driven water splitting by FeOOH. J. Mater. Chem. A 5, 21478–21485 (2017)

  37. 37.

    H.A. Abdulhussein, P. Ferrari, J. Vanbuel, C.J. Heard, A. Fielicke, P. Lievens, E. Janssens, R.L. Johnston, Altering CO binding on Gold Cluster Cations by Pd-doping. Nanoscale 11, 16130–16141 (2019)

  38. 38.

    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

  39. 39.

    X. Li, L. Zhang, X. Zang, X. Li, H. Zhu, Photo-promoted platinum nanoparticles decorated MoS2@graphene woven fabric catalyst for efficient hydrogen generation. ACS Appl. Mater. Interfaces 8, 10866–10873 (2016)

  40. 40.

    W. Zan, W. Geng, H. Liu, X. Yao, Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures. Phys. Chem. Chem. Phys. 18, 3159–3164 (2016)

Download references


The authors acknowledge the financial support by the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201800501, KJQN201900542, KJ1703042), the Program for Leading Talents in Science and Technology Innovation of Chongqing City (No. cstc2014kjcxljrc0023), the Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0237), the National Natural Science Foundation of China (No. 11947105, 11904041), and Chongqing Normal University Fund Project (No. 17XLB012).

Author information

Correspondence to Honglin Li or Yuting Cui.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cui, Y., Li, W. et al. Strain-tunable band alignment of blue phosphorus–WX2 (X = S/Se/Te) vertical heterostructures: from first-principles study. Appl. Phys. A 126, 92 (2020). https://doi.org/10.1007/s00339-020-3290-5

Download citation


  • Blue phosphorus
  • Heterojunction
  • First principles