Advertisement

Experimental study of the diamagnetism and the ferromagnetism in MoS2 thin films

  • 12 Accesses

Abstract

A series of MoS2 films were prepared by the chemical bath deposition method at different temperatures (60–80 °C). The film thicknesses range from 0.988 up to 10.25 µm. The films are polycrystalline. Vibrating sample magnetometer (VSM) was used to study the magnetic properties of these MoS2 films. The experiments were done at room temperature with the magnetic field applied in the film plane. The magnetization curves indicate the coexistence of ferromagnetism and diamagnetism. The saturation and remnant magnetizations, the coercive and saturation fields as well as the diamagnetic susceptibility have been measured and are discussed as a function of the film thickness and the synthesis temperature. A change in the magnetic anisotropy is observed, and the magnetization easy axis direction switches from in-plane to out-of-plane as the thickness increases. The magnetic properties are correlated with the structural ones.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    L Sun Y Liu P Wu W Zhou 2020 Mater. Chem. Phys. 239 122071

  2. 2.

    Z Huang X Peng H Yang C He L Xue G Hao C Zhang W Liu X Qi J Zhong 2013 RSC Adv. 3 12939

  3. 3.

    D Xiao G-B Liu W Feng X Xu W Yao 2012 Phys. Rev. Lett. 108 196802

  4. 4.

    K Kobayashi J Yamauchi 1995 Phys. Rev. B 51 17085

  5. 5.

    S Ahmad S Mulcherjee 2014 Graphene 3 52

  6. 6.

    KF Mak C Lee J Hone J Shan TF Heinz 2010 Phys. Rev. Lett. 105 136805

  7. 7.

    A Macková P Malinsky A Jagerová J Luxa K Szökölové Z Sofer 2019 Surf. Interf. 17 100357

  8. 8.

    K Kośmider J Fernández-Rossier 2013 Phys. Rev. B 87 075451

  9. 9.

    O Lopez-Sanchez D Lembke M Kayci A Radenovic A Kis 2013 Nat. Nanotechnol. 8 497

  10. 10.

    B Radisavljevic A Radenovic J Brivio V Giacometti A Kis 2011 Nat. Nanotechnol. 6 147

  11. 11.

    D Voiry M Salehi R Silva T Fujita MW Chen T Asefa VB Shenoy G Eda M Chhowalla 2013 Nanolett. 13 6222

  12. 12.

    DY Chung SK Park YH Chung SH Yu DH Lim N Jung HC Ham HY Park Y Piao SJ Yoo YE Sung 2014 Nanoscale 6 2131

  13. 13.

    E Guneri C Ulutas F Kiemizigul G Altindemir F Gode C Gumus 2010 Appl. Surf. Sci. 257 1189

  14. 14.

    P Roy SK Srivastava 2006 Thin Solid Films 496 293

  15. 15.

    KLP Thi LT Nguyen NH Ke DA Tuan TQA Le LVT Hung 2018 J. Electron. Mater. 47 6302

  16. 16.

    C Ataca H Şahin E Aktürk S Ciraci 2011 J. Phys. Chem. C 115 3934

  17. 17.

    Z Guguchia A Kerelsky D Edelberg S Banerjee F Rohr von D Scullion M Augustin M Scully DA Rhodes Z Shermadini H Luetkens A Shengelaya C Baines E Morenzoni A Amato JC Hone R Khasanov SJL Billinge E Santos AN Pasupathy YJ Uemura 2018 Sci. Adv. 4 3672

  18. 18.

    A Hannachi S Hammami N Raouafi H Maghraoui-Meherzi 2016 J. Alloys Compd. 663 507 515

  19. 19.

    SV Kite PA Chate KM Garadkar DJ Sathe 2017 J. Mater Sci: Mater. Electron. 28 16148 16154

  20. 20.

    M Mebarki A Layadi MR Khelladi A Azizi N Tiercelin V Preobrazhensky P Pernod 2017 J. Mater. Sci. 52 8 4472 4482

  21. 21.

    S Tongay SS Varnoosfaderani BR Appleton Wu Junqiao AF Hebard 2012 Appl. Phy. Lett. 101 123105

  22. 22.

    A Li J Pan Z Yang L Zhou X Xiong F Ouyang 2018 J. Magn. Magn. Mater. 451 520

  23. 23.

    WS Yun JD Lee 2015 J. Phys. Chem. C 5 2822

  24. 24.

    Y Li Z Zhou S Zhang Z Chen 2008 J. Am. Chem. Soc. 130 16739 16744

  25. 25.

    C Ataca H Sahin E Akturk S Ciraci 2011 J. Phys. Chem. C 115 3934 3941

  26. 26.

    TC Arnoldussen 1986 Proc IEEE 74 11 1526

  27. 27.

    HS Jung WD Doyle S Matsunuma 2003 J. Appl. Phys. 93 6462

  28. 28.

    M Mebarki A Layadi L Kerkache N Tiercelin V Preobrazhensky P Pernod 2015 Appl. Phys. A 120 1 97 104

  29. 29.

    ZH Wang K Chen Y Zhou HZ Zeng 2005 Ultramicroscopy 105 343 346

  30. 30.

    H Kockar T Meydan 2005 Eur. Phys. J. AP 30 3 185 188

  31. 31.

    H Kockar 2004 J. Supercond. Novel Mag. 17 4 531 536

  32. 32.

    H Kockar M Alper H Kuru T Meydan 2006 J. Mag. Magn. Mat. 304 2 e736 e738

  33. 33.

    H. Kockar, T. Meydan, Eur. Phys. J. B 26, 4, 435–438, (2002); J. Mag. Magn. Mat. 242–245, Part 1, 183–186, (2002); J. Mag. Magn. Mat. 242–245, Part 1, 187–190, (2002); Physica B 321, 124–128, (2002).

  34. 34.

    T Meydan H Kockar 2004 J. Optoelectron. Adv. Mater. 6 2 633 636

  35. 35.

    H Kockar T Meydan M Alper E Gungor 2006 Sens. Actuators A Phys. 129 188 191

  36. 36.

    T Meydan H Kockar 2001 Eur. Phys. J. B 24 4 457 461

Download references

Author information

Correspondence to Abdelhamid Layadi or Hager Maghraoui-Meherzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouarissa, A., Layadi, A. & Maghraoui-Meherzi, H. Experimental study of the diamagnetism and the ferromagnetism in MoS2 thin films. Appl. Phys. A 126, 93 (2020) doi:10.1007/s00339-020-3286-1

Download citation

Keywords

  • MoS2 films
  • Diamagnetism
  • Ferromagnetism
  • Hysteresis curves
  • Magnetic anisotropy