Advertisement

Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics

  • 18 Accesses

Abstract

Li and La co-doped Ba(1-x)(Lix/2Lax/2)TiO3 (BLLT) ceramics with x = 0.01, 0.02, 0.03, and 0.04 at A—site was synthesized by sol–gel combustion method. The powder X-ray diffraction and Raman analysis showed a good crystalline nature with perovskite tetragonal structure and the grain size of the samples was estimated and compared using a scanning electron microscope. The decreasing trend in the optical band gap upon doping and carrier concentration values was calculated from UV–Vis absorption spectra. Electron paramagnetic resonance g ~ 1.998 for BLLT ceramics confirms that the electrons are localized near oxygen vacancies. The observed signals may be attributed to the reduction of Ti4+/Ti3+ and its related defects. Moreover, the room temperature magnetization versus magnetic field loops showed the mixed weak ferromagnetic and diamagnetic phase. The enhancement of ε′ with respect to the doping of Li and La ion and increase in particle size due to the number of grain boundaries in BLLT ceramics were studied. The polarization versus electric field of BLLT samples indicates the lossy capacitor behavior, which is attributed to the relatively high leakage current caused by the existence of a defect or oxygen vacancies.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 393, 253 (2015)

  2. 2.

    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 405 (2018)

  3. 3.

    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, J. Alloy. Compd. 791, 529 (2019)

  4. 4.

    A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, J. Alloy. Compd. 788, 1202 (2019)

  5. 5.

    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, JETP Lett. 103, 105 (2016)

  6. 6.

    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Chin. Phys. B 25, 016102 (2016)

  7. 7.

    M.S. Alkathy, R. Gayam, K.C.R. James, Ceram. Int. 42, 15432 (2016)

  8. 8.

    M.S. Alkathy, K.K. Bokinala, K.C.J. Raju, J. Mater. Sci. 27, 3175 (2016)

  9. 9.

    R. Siddheswaran, P. Šutta, P. Novák, A. Hendrych, O. Životský, Ceram. Int. 42, 3887 (2015)

  10. 10.

    M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Nanomat. 9, 18 (2019)

  11. 11.

    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomat. 9, 13 (2019)

  12. 12.

    A.P.A. Moraes, A.G.S. Filho, P.T.C. Freire, J.M. Filho, J.C.M. Peko, J. Appl. Phys. 109, 124102 (2011)

  13. 13.

    S.P. Culver, V. Stepanov, M. Mecklenburg, S. Takahashi, R.L. Brutchey, Chem. Commun. 50, 3480 (2014)

  14. 14.

    T. Kimura, Q. Dong, S. Yin, T. Hashimoto, A. Sasaki, T. Sato, J. Eur. Ceram. Soc. 33, 1009 (2013)

  15. 15.

    X. Liu, M. Zhu, Z. Chen, B. Fang, J. Ding, X. Zhao, Xu Haiqing, Haosu Luo J. Alloy. Compd. 613, 219 (2014)

  16. 16.

    T.D. Dunbar, W.L. Warren, B.A. Tuttle, C.A. Randall, Y. Tsur, J. Phys. Chem. B. 108, 908 (2004)

  17. 17.

    M.D. Glinchuk, I.P. Bykov, S.M. Kornienko, V.V. Laguta, A.M. Slipenyuk, A.G. Bilous, O.I. Vyunov, O.Z. Yanchevskiib, J. Mater. Chem. 10, 941 (2000)

  18. 18.

    M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, J. Phys. B. 34, 41126 (2013)

  19. 19.

    M.S. Alkathy, R. Gayam, B.K. Hazra, K.C.J. Raju, Ceram. Int. 43, 4937 (2017)

  20. 20.

    M.S. Alkathy, K.C.J. Raju, J. Magn. Magn. Mater. 452, 40 (2018)

  21. 21.

    A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, J. Phys. B. 405, 99 (2010)

  22. 22.

    D.F. Shao, J. Yang, H.B. Jian, X.B. Zhu, Y.P. Sun, J. Appl. Phys. 113, 063902 (2013)

  23. 23.

    S.K. Ghosh, S.K. Rout, Curr. Appl. Phys. 16, 989 (2016)

  24. 24.

    U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, Appl. Phys. Lett. 91, 062908 (2007)

  25. 25.

    P. Xue, Y. Hu, W. Xia, H. Wu, X. Zhu, J. Alloy. Compd. 695, 2870 (2017)

  26. 26.

    V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Crystallogr. Rep. 60, 635 (2015)

  27. 27.

    H. Zhan, X. Jiang, M. Zhu, X. Li, Z. Luo, K. Shu, J. Crys. Gro. 433, 80 (2016)

  28. 28.

    M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J Alloy. Compd. 579, 473 (2013)

  29. 29.

    K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A.P.B. Selvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, R. Murugaraj, J. Sol-Gel Sci. Tech. 88, 584 (2018)

  30. 30.

    S.V. Trukhanov, JETP 101, 520 (2005)

  31. 31.

    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 9 (2008)

  32. 32.

    N. Sharma, A. Gaura, U.K. Gaur, J. Ceram. Int. 40, 16441 (2014)

  33. 33.

    M.C. Rodríguez-Aranda, F. Calderón-Piñar, M.A. Hernández-Landaverde, J. Heiras, R. Zamorano-Ulloa, D. Ramírez-Rosales, J.M. Yáñez-Limón, J. Lumin. 179, 280 (2016)

  34. 34.

    L.V. Maneeshya, P.V. Thomas, K. Joy, J. Opt. Mat. 46, 304 (2015)

  35. 35.

    L.V. Maneeshya, S.S. Lekshmy, P.V. Thomas, K. Joy, J. Mater. Sci. Mater. Electron. 25, 2507 (2014)

  36. 36.

    M. Borah, D. Mohanta, J. Appl. Phys. 112, 124321 (2012)

  37. 37.

    J.L.H. Clabel, V.A.G. Rivera, I.C. Nogueira, E.R. Leited, M.A. Pereira-da-Silva, M Siu Lia, E Marega. J. Lumin. 192, 969 (2017)

  38. 38.

    T. Kolodiazhnyi, A. Petric, J. Phys. Chem. Solids 64, 953 (2003)

  39. 39.

    Lu Da-Yong, Y.-Y. Peng, Yu. Xin-Yu, X.-Y. Sun, J. Alloy. Compd. 681, 128 (2016)

  40. 40.

    I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, J. Phys. Condens. Matter. 12, 158 (2000)

  41. 41.

    S.V. Trukhanov, JETP 100, 105 (2005)

  42. 42.

    G.R. Gajula, K.N.C. Kumar, L.R. Buddiga, G.P. Nethala, Results Phys. 11, 899 (2018)

  43. 43.

    B.D. Stojanović, V.R. Mastelaro, C.O.P. Santos, J.A. Varela, Sci. Sinter. 36, 179 (2004)

  44. 44.

    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, J. Magn. Magn. Mater. 462, 135 (2018)

  45. 45.

    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloy. Compd. 754, 256 (2018)

  46. 46.

    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Ceram Int. 44, 13529 (2018)

  47. 47.

    Y. Wang, Pu Yongping, P. Zhang, J. Alloy. Compd. 653, 596 (2015)

  48. 48.

    S.B. Aziz, R.M. Abdullah, M.F.Z. Kadir, H.M. Ahmed, Electrochim. Acta 296, 494 (2019)

  49. 49.

    V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, J. Magn. Magn. Mater. 477, 16 (2019)

Download references

Author information

Correspondence to R. Murugaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madhan, K., Murugaraj, R. Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics. Appl. Phys. A 126, 97 (2020). https://doi.org/10.1007/s00339-020-3285-2

Download citation

Keywords

  • BaTiO3
  • Sol–gel combustion
  • Perovskite
  • Ferroelectrics
  • Defect
  • Optical
  • Electrical
  • Magnetic properties