Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparative evaluation of nuclear radiation shielding properties of xTeO2 + (100–x)Li2O glass system

  • 41 Accesses


In the present investigation, nuclear radiation shielding parameters of xTeO2 + (100–x)Li2O (where x = 95, 90, 85, 80, 75, and 70 mol%) glass system have been examined. Gamma shielding parameters such as mass attenuation coefficients (MAC), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), effective atomic number (Zeff), effective electron density (Neff) were calculated. Moreover, neutron effective cross sections (∑R) are determined. The calculations for present materials have been performed in different photon energy ranges (0.01–20 MeV) and using Monte Carlo N-Particle eXtended (MCNPX) simulation code and theoretical results were also obtained with WinXcom program. The results obtained from the MCNPX and WinXcom program were found to be in well harmony. Moreover, for the assessment of radiation shielding success of tellurite glasses, the mass stopping power (MSP) and projected range (PR) were computed for proton and alpha particles using stopping and range of ions in matter (SRIM) code. When the results obtained from the study are examined, it is seen that 95TeLi glass has the lowest HVL, TVL, MFP, TF and the highest (∑R) values. Therefore, the 95TeLi glass has the most perfect radiation shielding achievement than other investigated glasses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    G. Lakshminarayana et al., Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non Cryst. Solids 471, 222–237 (2017)

  2. 2.

    R. El-Mallawany, M. Sayyed, M. Dong, Comparative shielding properties of some tellurite glasses: part 2. J. Non Cryst. Solids 474, 16–23 (2017)

  3. 3.

    A. Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

  4. 4.

    M. Sayyed et al., Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non Cryst. Solids 507, 30–37 (2019)

  5. 5.

    M. Figueiredo et al., On observation of the downconversion mechanism in Er3+/Yb3+ co-doped tellurite glass using thermal and optical parameters. J. Lumin. 157, 365–370 (2015)

  6. 6.

    S. Sakida, S. Hayakawa, T. Yoko, Part 2.125 Te NMR study of M2O–TeO2 (M= Li, Na, K, Rb and Cs) glasses. J. Non Cryst. Solids 243(1), 13–25 (1999)

  7. 7.

    J. Heo et al., Spectroscopic analysis of the structure and properties of alkali tellurite glasses. J. Am. Ceram. Soc. 75(2), 277–281 (1992)

  8. 8.

    R. El-Mallawany, A. Abd-El-Moneim, Comparison between the elastic moduli of tellurite and phosphate glasses. Phys. Status Solidi (a) 166(2), 829–834 (1998)

  9. 9.

    Y. Himei et al., X-ray photoelectron spectroscopy of alkali tellurite glasses. J. Non Cryst. Solids 211(1–2), 64–71 (1997)

  10. 10.

    H. Nasu et al., Nonresonant-type third-order nonlinearity of (PbO, Nb2O5)–TiO2–TeO2 glass measured by third-harmonic generation. Jpn. J. Appl. Phys. 31(12R), 3899 (1992)

  11. 11.

    P. Mošner, K. Vosejpková, L. Koudelka, Thermal properties and stability of TeO2 containing phosphate glasses. Thermochim. Acta 522(1–2), 155–160 (2011)

  12. 12.

    S.H. Kim, T. Yoko, S. Sakka, Linear and nonlinear optical properties of TeO2 glass. J. Am. Ceram. Soc. 76(10), 2486–2490 (1993)

  13. 13.

    O. Agar et al., Er2O3 effects on photon and neutron shielding properties of TeO2–Li2O–ZnO–Nb2O5 glass system. Results Phys. 13, 102277 (2019)

  14. 14.

    F.B. Costa et al., Effect of lithium addition on Te4+ emission in TeO2–Li2O glasses. J. Non Cryst. Solids 524, 119609 (2019)

  15. 15.

    M. Dong, B. Elbashir, M. Sayyed, Enhancement of gamma ray shielding properties by PbO partial replacement of WO3 in ternary 60TeO2–(40–x) WO3xPbO glass system. Chalcogenide Lett. 14(3), 113–118 (2017)

  16. 16.

    V.K. Rai, D. Rai, S. Rai, Pr3+ doped lithium tellurite glass as a temperature sensor. Sens. Actuators A 128(1), 14–17 (2006)

  17. 17.

    R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Radiat. Phys. Chem. 135, 32–44 (2017)

  18. 18.

    B. Elbashir et al., Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018)

  19. 19.

    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross section database (version 1.5). [Online] Available: http://physics.nist.gov/xcom [2020, January 11]. National Institute of Standards and Technology, Gaithersburg, MD (2010)

  20. 20.

    D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat. Phys. Chem. 138, 75–80 (2017)

  21. 21.

    H. Tekin et al., Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron radiation. Ceram. Int. (2019)

  22. 22.

    S. Issa et al., Investigations of radiation shielding and elastic properties of PbO–SiO2–B2O3–Na2O glasses using Monte Carlo method. Curr. Appl. Phys. (2018)

  23. 23.

    H.O. Tekin et al., Photon shielding characterizations of bismuth modified borate–silicate–tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 211, 9–16 (2018)

  24. 24.

    M. Sayyed et al., Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 217, 11–22 (2018)

  25. 25.

    H. Tekin et al., Characterization of a broad range gamma-ray and neutron shielding properties of MgO–Al2O3–SiO2–B2O3 and Na2O–Al2O3–SiO2 glass systems. J. Non Cryst. Solids 518, 92–102 (2019)

  26. 26.

    M. Büyükyıldız et al., Measurement of photon interaction parameters of high-performance polymers and their composites. Radiat. Effects Defects Solids 173(5–6), 474–488 (2018)

  27. 27.

    H. Tekin et al., Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464 (2019)

  28. 28.

    S. Gowda et al., Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana 63(3), 529–541 (2004)

  29. 29.

    J. Ngaile et al., Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations. Radiat. Prot. Dosim. 130(4), 490–498 (2008)

  30. 30.

    G. Singh et al., Measurement of attenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method. J. Alloy Compd. 619, 356–360 (2015)

  31. 31.

    M. Sayyed, Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94(11), 1133–1137 (2016)

  32. 32.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268(11–12), 1818–1823 (2010)

  33. 33.

    J. Pitarke et al., The Z13 correction to the Bethe–Bloch energy loss formula. EPL (Europhys. Lett.) 24(7), 613 (1993)

  34. 34.

    P. Häberle, W. Ibañez, S.R. Barman, Y.Q. Cai, K. Horn, Photoexcited collective modes in thin alkali layers adsorbed on Al. Nucl. Instrum. Methods. Phys. Res. B. 182, 102–108 (2001)

  35. 35.

    E. Kavaz et al., The mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. 45(12), 15348–15357 (2019)

  36. 36.

    S. Manohara, S. Hanagodimath, L. Gerward, Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates. Phys. Med. Biol. 53(20), N377 (2008)

  37. 37.

    J.F. Ziegler, SRIM-2003. Nucl. Instrum. Methods. Phys. Res. Sect. B 219, 1027–1036 (2004)

  38. 38.

    H. Tekin et al., An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceram. Int. 45(8), 9934–9949 (2019)

  39. 39.

    G. Susoy et al., The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Mater. Chem. Phys. 242, 122481 (2019)

  40. 40.

    S.A. Issa et al., The effective contribution of PbO on nuclear shielding properties of xPbO-(100–x) P2O5 glass system: a broad range investigation. Appl. Phys. A 125(9), 640 (2019)

  41. 41.

    S.A. Issa, H. Tekin, The multiple characterization of gamma, neutron and proton shielding performances of xPbO-(99–x) B2O3–Sm2O3 glass system. Ceram. Int. 45(17), 23561–23571 (2019)

  42. 42.

    H.O. Tekin, V. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 121, 122–125 (2017)

  43. 43.

    E. Kavaz et al., Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study. Radiat. Phys. Chem. 162, 187–193 (2019)

  44. 44.

    O. Kilicoglu, E.E. Altunsoy, O. Agar, M. Kamislioglu, M.I. Sayyed, H.O. Tekin, N. Tarhan. Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses. Results Phys 14, 102424 (2019). https://doi.org/10.1016/j.rinp.2019.102424

  45. 45.

    H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl. Sci. Tech. 28(7), 95 (2017)

  46. 46.

    H.O. Tekin. MCNP-X monte carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3 × 3 inch NaI(Tl) detector and comparison with xcom and monte carlo data. Sci. Technol. Nucl. Installations 2016, 6547318 (2016). https://doi.org/10.1155/2016/6547318

  47. 47.

    M. Almatari et al., Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Results Phys. 12, 2123–2128 (2019)

  48. 48.

    A. Mesbahi, H. Ghiasi, Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. Appl. Radiat. Isot. 136, 27–31 (2018)

  49. 49.

    Y. Elmahroug et al., Investigation of radiation shielding properties for Bi2O3–V2O5–TeO2 glass system using MCNP5 code. J. Non Cryst. Solids 499, 32–40 (2018)

  50. 50.

    A. Sharma et al., Simulation of shielding parameters for TeO2–WO3–GeO2 glasses using FLUKA code. Results Phys. 13, 102199 (2019)

  51. 51.

    M. Sayyed, H. Tekin, O. Agar, Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2–Cr2O3 glasses: the role of TeO2. Radiat. Phys. Chem. 163, 58–66 (2019)

  52. 52.

    R. Divina et al., Physical, structural, and radiation shielding properties of B2O3–MgO–K2O–Sm2O3 glass network modified with TeO2. Radiat. Phys. Chem. 160, 75–82 (2019)

  53. 53.

    A. Mesbahi, A.-A. Azarpeyvand, A. Shirazi, Photoneutron production and backscattering in high density concretes used for radiation therapy shielding. Ann. Nucl. Energy 38(12), 2752–2756 (2011)

  54. 54.

    K. Verdipoor, A. Alemi, A. Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat. Phys. Chem. 147, 85–90 (2018)

  55. 55.

    G. Susoy, Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O–B2O3–P2O5–TeO2 glass-system. Ceram. Int. 46, 3844–3854 (2020)

  56. 56.

    RSICC computer code collection, MCNPX user's manual version 2.4.0. montecarlo N-particle transport code system for multiple and high energy applications (2002)

  57. 57.

    J.F. Ziegler, J. Biesack, U. Littmark, Computer code SRIM (IBM-Research, New York, 2000)

Download references

Author information

Correspondence to M. Kamislioglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamislioglu, M., Altunsoy Guclu, E.E. & Tekin, H.O. Comparative evaluation of nuclear radiation shielding properties of xTeO2 + (100–x)Li2O glass system. Appl. Phys. A 126, 95 (2020). https://doi.org/10.1007/s00339-020-3284-3

Download citation


  • Lithium tellurite
  • MCNPX code
  • Radiation shielding
  • MSP
  • PR