Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4

  • 26 Accesses


Nanotechnology manufacturing is rapidly developing and promises that the essential changes will have significant commercial and scientific impacts be applicable in an extensive range of areas. In this area, cobalt ferrite nanoparticles have been considered as one of the competitive candidates. The present study is based on the investigation of the effect of rare-earth (RE) incorporation on the physical properties of CoFe2O4. Rare-earth ions doped cobalt ferrites with composition CoRE0.025Fe1.975O4 where RE are Ce, Er and Sm have been synthesized by citrate auto combustion technique. Characterization is achieved using X-Ray diffraction (XRD) technique for structural analysis. The obtained data show that the samples exhibit a single-phase spinel structure. RE is successfully substituted into the spinel lattice without any distortion and it acts as inhibiting agent for grain growth. Room temperature M–H curves exhibit ferrimagnetism behavior with a decrease in saturation magnetization and coercivity indicating these materials can be applicable for magnetic data storage and magneto-recording devices. The electrical conductivity is studied as a function of frequency in the temperature range of 300–700 K. The conduction mechanism is attributed to the hopping mechanism. The Seebeck coefficient S is found to be positive for Ce indicating that Co/Ce ferrite behaves as a p-type semiconductor. While it is fluctuated between positive and negative for Er/Sm-doped samples throughout the studied temperature range. The cobalt doped with Er3+ and Sm3+ exhibits degenerated semiconductor trends at higher temperatures. Such data offer a new opportunity for optimizing and improving the performance of cobalt ferrite where the physical properties are decisive.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    M. Rohini, S.G. Algude, D.S. Birajdar, Electrical and dielectric properties of zirconium doped nickel-zinc ferrite. World Res. J. Appl. Phys. 1(1), 14–19 (2010)

  2. 2.

    B. P. Parvatheeswara Rao et al., Synthesis and magnetic studies of Ni-Zn ferrite nanoparticles. J. Optoelectron. Adv. Mater., 8(5), 1703–1705 (2006)

  3. 3.

    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35(4), 374–381 (2017)

  4. 4.

    F. Ansari, M. Salavati-Niasari, Simple sol-gel auto-combustion synthesis and characterization of lead hexaferrite by utilizing cherry juice as a novel fuel and green capping agent. Adv. Powder Technol. 27(5), 2025–2031 (2016)

  5. 5.

    M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati-Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J. Mater. Sci. Mater. Electron. 28(23), 17627–17634 (2017)

  6. 6.

    S. Ahmadian-Fard-Fini, D. Ghanbari, O. Amiri, M. Salavati-Niasari, Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydr. Polym., 229, 115428 (2020)

  7. 7.

    S. Ahmadian-Fard-Fini, D. Ghanbari, M. Salavati-Niasari, Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe 2 O 4 -carbon dots nanocomposite material. Compos. Part B Eng. 161(2018), 564–577 (2019)

  8. 8.

    D. Ghanbari, M. Salavati-Niasari, M. Esmaeili-Zare, P. Jamshidi, F. Akhtarianfar, Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. J. Ind. Eng. Chem. 20(5), 3709–3713 (2014)

  9. 9.

    D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)

  10. 10.

    P. Jamshidi, D. Ghanbari, M. Salavati-Niasari, Sonochemical synthesis of La(OH)3 nanoparticle and its influence on the flame retardancy of cellulose acetate nanocomposite. J. Ind. Eng. Chem. 20(5), 3507–3512 (2014)

  11. 11.

    S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)

  12. 12.

    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27(5), 4800–4809 (2016)

  13. 13.

    C. V. Gopal Reddy, S. V. Manorama, V. J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B Chem., 55(1), 90–95 (1999)

  14. 14.

    C.P. Luo, S.H. Liou, L. Gao, Y. Liu, D.J. Sellmyer, Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy. Appl. Phys. Lett. 77(14), 2225–2227 (2000)

  15. 15.

    A.K. Nikumbh et al., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

  16. 16.

    J. Depeyrot et al., Rare earth doped maghemite EDL-MF: A perspective for nanoradiotherapy ? J. Magn. Magn. Mater., 252(1–3 SPEC. ISS), 375–377 (2002)

  17. 17.

    M. Yehia, S.M. Ismail, A. Hashhash, Structural and magnetic studies of rare-earth substituted nickel ferrites. J. Supercond. Nov. Magn. 27(3), 771–774 (2014)

  18. 18.

    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(11), 11691–11697 (2016)

  19. 19.

    H.T.J. Zhou, J. Ma, C. Sun, L. Xie, Z. Zhao, Low-temperature synthesis of NiFe2O4 by a hydrothermal method. J. Am. Ceram. Soc. 88(12), 3535–3537 (2005)

  20. 20.

    B.D. Cullity, Elements of X-ray Diffraction, Third (Addison-Wesley, London, London, 1967)

  21. 21.

    L. Corbari et al., Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata. Biogeosciences 5(5), 1295–1310 (2008)

  22. 22.

    S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940)

  23. 23.

    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

  24. 24.” .

  25. 25.

    K. Elayakumar et al., Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

  26. 26.

    E. Ateia, M.A. Ahmed, A.K. El-Aziz, Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrite. J. Magn. Magn. Mater. 311(2), 545–554 (2007)

  27. 27.

    K.-C. Kao, W. Hwang, Electrical Transport in Solids: with Particular Reference to Organic Semiconductors (Pergamon Press, Oxford, 1981)

  28. 28.

    H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (Wiley, Hoboken, 1962)

  29. 29.

    S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)

  30. 30.

    D.M. Ghone, V.L. Mathe, K.K. Patankar, S.D. Kaushik, Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J. Alloys Compd. 739, 52–61 (2018)

  31. 31.

    Z. Chen, Y. Du, Z. Li, K. Yang, X. Lv, Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route. J. Magn. Magn. Mater. 426, 121–125 (2017)

  32. 32.

    D.J. Craik, Magnetic oxides (Wiley, London, 1975)

  33. 33.

    F.T. Parker, M.W. Foster, D.T. Margulies, A.E. Berkowitz, Spin canting, surface magnetization, and finite-size effects in \ensuremath{\gamma}-${\mathrm{Fe}}_{2}$${\mathrm{O}}_{3}$ particles. Phys. Rev. B 47(13), 7885–7891 (1993)

  34. 34.

    M.P. Morales, C.J. Serna, F. Bødker, S. Mørup, Spin canting due to structural disorder in maghemite. J. Phys. Condens. Matter 9(25), 5461–5467 (1997)

  35. 35.

    V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 320(11), 1729–1734 (2008)

  36. 36.

    E. Ateia, L.M. Salah, A.A.H. El-Bassuony, Investigation of Cation Distribution and Microstructure of Nano Ferrites Prepared by Different Wet Methods. J. Inorg. Organomet. Polym. Mater. 25(6), 1362–1372 (2015)

  37. 37.

    J. Smit, Magnetic properties of materials (McGraw-Hill, New York, 1971)

  38. 38.

    L. Kumar, M. Kar, Effect of Ho3+ substitution on the cation distribution, crystal structure and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite. J. Exp. Nanosci. 9(4), 362–374 (2014)

  39. 39.

    T. Sodaee, A. Ghasemi, E. Paimozd, Remarkable influence of terbium cations on the magnetic properties of cobalt ferrite nanoparticles. Mater. Phys. Mech. 17(1), 11–16 (2013)

  40. 40.

    C. Yan et al., Sol–gel synthesis, magnetic and magneto-optical properties of CoFe2−xTbxO4 nanocrystalline films. J. Magn. Magn. Mater. 192(3), 396–402 (1999)

  41. 41.

    T. Sodaee, A. Ghasemi, E. Paimozd, A. Paesano, A. Morisako, An approach for enhancement of saturation magnetization in cobalt ferrite nanoparticles by incorporation of terbium cation. J. Electron. Mater. 42(9), 2771–2783 (2013)

  42. 42.

    E. Ateia, A.A.H. El-Bassuony, Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J. Mater. Sci. Mater. Electron. 28(15), 11482–11490 (2017)

  43. 43.

    E. Ateia, M.A. Ahmed, R.M. Ghouniem, Effect of rare earth substitution on the structural and electrical properties of Cu–Mg ferrite. Int. J. Mod. Phys. B 29(19), 1550126 (2015)

  44. 44.

    M.T. Rahman, C.V. Ramana, Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116(16), 164108 (2014)

  45. 45.

    Y. D. Kolekar, L. J. Sanchez, and C. V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys., 115(14), 2014

  46. 46.

    B.V. Bhise, V.C. Mahajan, M.G. Patil, S.D. Lotke, S.A. Patil, Electrical-Properties Of Mn2-Zn FerriteS(TI4+ Substituted NI). Indian J. Pure Appl. Phys. 33(8), 459–462 (1995)

  47. 47.

    R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1994)

Download references

Author information

Correspondence to Ebtesam E. Ateia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Abdelmaksoud, M.K., Arman, M.M. et al. Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Appl. Phys. A 126, 91 (2020).

Download citation


  • Rare earth
  • Seebeck coefficient
  • Hopping mechanism
  • Degenerate semiconductor