Applied Physics A

, 126:104 | Cite as

Microstructure and dielectric properties of LiTaO3 ceramics with MnO2 addition fabricated by hot-pressing sintering

  • Qiang Zheng
  • Youfeng ZhangEmail author


Lithium tantalite (LiTaO3) is an excellent single crystal, only a few studies focused on polycrystalline LiTaO3 ceramics, because it is difficult to sintering densification in fabrication process by common sintering. In this paper, LiTaO3 composite ceramics with added 3 wt% MnO2 were obtained by hot-pressing sintering at different temperatures from 1200 to 1350 °C. The sinterability, microstructure and dielectric properties of LiTaO3 ceramics fabricated at sintering temperatures were investigated. The relative density of the LiTaO3 ceramics was significantly enhanced as the sintering temperature increases first and then decreased. The LiTaO3 ceramics achieved the highest relative density (98.6%) and shown homogeneous microstructure when sintered at 1300 °C. The LiTaO3 and manganese oxide phases were observed in the MnO2/LiTaO3 ceramics fabricated at different sintering temperatures. The dielectric properties of MnO2/LiTaO3 ceramics were significantly influenced by the sintering temperatures. The study of dielectric properties revealed that the specimen had excellent dielectric properties when sintering temperature was 1300 °C and the dielectric constant was 78, as it tends to stay invariable at room temperature.


LiTaO3 ceramics MnO2 addition Hot pressing Sintering temperature Dielectric properties 



This work was supported by the National Natural Science Foundation of China (Nos. 11604204, 51603120 and  51701114).


  1. 1.
    Y. Cho, K. Fujimoto, Y. Hiranage, Y. Wagatsuma, A. Onoe, K. Twrabe, K. Kitamura, Appl. Phys. Lett. 81, 4401 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    K. Länge, B.E. Rapp, M. Rapp, Anal. Bioanal. Chem. 391, 1509 (2008)CrossRefGoogle Scholar
  3. 3.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    X.X. Gong, M. Fang, G.T. Fei, M. Liu, F.D. Li, G.L. Shang, L.D. Zhang, RSC. Adv. 5, 31615 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Ravez, G.T. Joo, J. Senegas, P. Hagenmuller, Jpn. J. Appl. Phys. 24, 1000 (1985)CrossRefGoogle Scholar
  6. 6.
    P. Reichenbach, T. Kämpfe, A. Thiessen, A. HaußMann, T. Woike, L.M. Eng, Appl. Phys. Lett. 105, 122906 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D. Ming, J.M. Reau, J. Rzvez, J. Gitate, P. Hagenmuller, J. Solid State Chem. 116, 185 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    M. Gruber, I. Kraleva, P. Supancic, J. Bielen, D. Kiener, R. Bermejo, J. Eur. Ceram. Soc. 37, 4397 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Tian, V. Gopalan, L. Galambos, Appl. Phys. Lett. 85, 4445 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    P. Bomlai, P. Sinsap, S. Muensit, S.J. Milne, J. Am. Ceram. Soc. 91, 624 (2008)CrossRefGoogle Scholar
  11. 11.
    C.F. Chen, G.L. Brennecka, G. King, E.L. Tegtmeier, T. Holesinger, J. Ivy, P. Yang, J. Mater. Sci. Mater. Electron. 28, 3725 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Huanosta, A.R. West, J. Appl. Phys. 67, 5386 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    J.J. Zhou, J.F. Li, K. Wang, X.W. Zhang, J. Mater. Sci. 46, 5111 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yang, Y.G. Liu, L. Zhang, M.L. Hu, O. Yang, Z.H. Huang, M.H. Fang, Adv. Powder Technol. 25, 933 (2014)CrossRefGoogle Scholar
  15. 15.
    C.F. Chen, A. Llobet, G.L. Brennecka, R.T. Forsyth, D.R. Guidry, P.A. Papin, R.J. McCabe, J. Am. Ceram. Soc. 95, 2820 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Huanosta, E. Alvarez, M.E. Villafuerte-Castrejón, A.R. West, Mater. Res. Bull. 39, 2229 (2004)CrossRefGoogle Scholar
  17. 17.
    N. Bamba, T. Yokouchi, J. Takaoka, B. Elouadi, T. Fukami, Ferroelectrics 304, 135 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Tahiri, N. Masaif, A. Jennane, E.M. Lemdek, K. Benkhouja, E.M. Lotfi, Opt. Quantum Electron. 48, 278 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, D. Jia, Y. Zhou, Q. Meng, Y. Liu, H. Ke, Ceram. Int. 35, 3475 (2009)CrossRefGoogle Scholar
  20. 20.
    B.S. Chiou, T.Y. Lin, J.G. Duh, Mater. Chem. Phys. 28, 51 (1991)CrossRefGoogle Scholar
  21. 21.
    P.J. Lin, L.A. Bursill, Micron 13, 275 (1982)Google Scholar
  22. 22.
    Y. Torii, T. Sekiya, T. Yamamoto, Mater. Res. Bull. 18, 1569 (1983)CrossRefGoogle Scholar
  23. 23.
    A.K. Axelsson, Y. Pan, M. Valant, N.M. Alford, J. Am. Ceram. Soc. 93, 800 (2010)CrossRefGoogle Scholar
  24. 24.
    Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, Appl. Phys. Lett. 108, 172906 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    L. Chen, H. Fan, S. Zhang, J Am Ceram Soc. 100, 3568 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Shimada, K. Kodaira, T. Matsushita, J. Mater. Sci. 19, 1385 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    W.W. Yang, Y.F. Zhang, Vacuum 173, 109130 (2020)ADSCrossRefGoogle Scholar
  28. 28.
    Y.F. Zhang, Y. Zhou, S.C. Jia, H.Y. Li, Q.C. Meng, Mater. Sci. Eng. A 448, 330 (2007)CrossRefGoogle Scholar
  29. 29.
    Y.D. Hou, P.X. Lu, M.K. Zhu, X.M. Song, J.L. Tang, B. Wang, H. Yan, J. Am. Ceram. Soc. 87, 847 (2004)CrossRefGoogle Scholar
  30. 30.
    Y. Yan, K.H. Cho, S. Priya, A. Feteira, J. Am. Ceram. Soc. 94, 3953 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Xiao, Y. Wei, P. Zhang, Mater. Chem. Phys. 225, 99 (2019)CrossRefGoogle Scholar
  32. 32.
    X. Dai, A. Digiovanni, D. Viehland, J. Appl. Phys. 74, 3399 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    A.P. Barranco, F.C. Piñar, P. Martínez, E.T. García, J. Eur. Ceram. Soc. 21, 523 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations