Advertisement

Applied Physics A

, 126:101 | Cite as

Synthesis, crystal structure and optical properties of Anderson-type heteropolyanion with cobalt cations

  • Yassine AmmariEmail author
  • S. Abid
  • K. Horchani Naifer
Article
  • 9 Downloads

Abstract

A sample inorganic A-type Anderson polyoxometalate (POM) (TeMo6) compound formulated as [Co(H2O)6]3[TeMo6O24] is synthesized in aqueous solution by slow evaporation technique. Single-crystal X-ray diffraction analysis reveals that the obtained compound crystallizes in the centrosymmetric hexagonal space group (R-3c) with a formula unit made up of one [TeMo6O24]6− A-type Anderson anion and three [Co(H2O)3]2+ cations. The molecular Hirshfeld surface indicates that the crystal packing is stabilized by H-bonds interactions to generate 3D supramolecular frameworks. Furthermore, some optical properties such as bandgap energy, refractive index, dielectric constant and optical conductivity of the sample are investigated. The large value of refractive index known in the visible region of electromagnetic spectrum (n = 3.5 at 1.8 eV) reveals that this sample can become a promising candidate for visible optical communication devices. The emission fluorescent spectrum in the solid state at room temperature is measured and the decay lifetime curves are obtained by monitoring the ligand-to-metal charge transfer transition (LMCT). The studies of the colorimetric properties of the sample reveal that the color coordinates (x = 0.33667; y = 0.25564) are located in the region of National Television System Committee (NTSC) in the CIE chromaticity chart and the calculated correlated color temperature value (CCT ~ 5085 K) indicates that the optimized compound could be applied as a cool light emission diode.

Keywords

Anderson-type polyanions Crystal structure Hexamolybdotellurat Optic properties 

Notes

Acknowledgements

The authors thank for financial Professor Dominique Luneau of Lyon University (France) for the data collection facilities.

Supplementary material

339_2020_3280_MOESM1_ESM.docx (475 kb)
Supplementary file1 (DOCX 474 kb)

References

  1. 1.
    JJP Berzelius 1826 Ann. Phys. Chem. 6 369 380ADSCrossRefGoogle Scholar
  2. 2.
    A Blazevic A Rompel 2016 Coord. Chem. Rev. 307 42 64CrossRefGoogle Scholar
  3. 3.
    A Proust R Thouvenot P Gouzerh 2008 Chem. Commun. 16 1837 1852CrossRefGoogle Scholar
  4. 4.
    DE Katsoulis 1998 Chem. Rev. 98 359 388CrossRefGoogle Scholar
  5. 5.
    IV Kozhenikov 1998 Chem. Rev. 98 171 198CrossRefGoogle Scholar
  6. 6.
    AJ Gaunt I May M Helliwell SJ Richardson 2002 Am. Chem. Soc. 124 13350 13351CrossRefGoogle Scholar
  7. 7.
    V Shivaiah M Nagaraju SK Das 2003 Inorg. Chem. 42 6604 6606CrossRefGoogle Scholar
  8. 8.
    HY An YG Li EB Wang DR Xiao CY Sun L Xu 2005 Inorg. Chem. 44 6062 6070CrossRefGoogle Scholar
  9. 9.
    HY An DR Xiao EB Wang YG Li XL Wang L Xu 2005 Eur. J. Inorg. Chem. 2005 854 859CrossRefGoogle Scholar
  10. 10.
    JW Zhang YC Huang J Zhang S She J Hao YQ Wei 2014 Dalton Trans. 43 2722 2725CrossRefGoogle Scholar
  11. 11.
    NI Gumerova A Blazevic TC Fraile A Roller G Giester A Rompel 2018 Acta Cryst. C74 1378 1383Google Scholar
  12. 12.
    SK Suram PF Newhouse JM Gregoire ACS Comb 2016 Sci. 18 673 681Google Scholar
  13. 13.
    H Yadav N Sinha S Goel B Singh I Bdikin A Saini K Gopalaiahd B Kumara 2017 Acta Cryst. B 73 805 819CrossRefGoogle Scholar
  14. 14.
    GM Sheldrick 2017 Acta Cryst. A 64 112 122CrossRefGoogle Scholar
  15. 15.
    S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M. A. Spackman, (2013). Crystal Explorer 3.1, University of Western Australia, Crawley, Western, Australia, pp. 2005–2013.Google Scholar
  16. 16.
    ID Brown D Altermatt 1985 Acta Cryst. B 41 244 247CrossRefGoogle Scholar
  17. 17.
    X Wang J Sun H Lin Z Chang A Tian G Liu X Wang 2016 Dalton Trans. 45 2709 2719CrossRefGoogle Scholar
  18. 18.
    AL Rohl M Moret W Kaminsky K Claborn JJ McKinnon B Kahr 2008 Cryst. Growth Des. 8 4517 4525CrossRefGoogle Scholar
  19. 19.
    N Tyagi N Sinha H Yadava B Kumara 2016 Acta Cryst. B 72 593 601CrossRefGoogle Scholar
  20. 20.
    C. Jelsch, K. Ejsmont. L. Hudera, IUCrJ. 1 (2014) 119–128.CrossRefGoogle Scholar
  21. 21.
    R Khoshnavazi L Kaviani FM Zonoz 2009 Inorg. Chim. Acta. 362 1223 1228CrossRefGoogle Scholar
  22. 22.
    SC Manna S Mistri E Zangrando 2014 Inorg. Chim. Acta. 413 166 173CrossRefGoogle Scholar
  23. 23.
    S.Y. El-Zaiat, Optik. 124, 157–161 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    G Anbazhagan PS Joseph G Shankar J Asian 2012 J. Technol. 11 36 39Google Scholar
  25. 25.
    L Wu H Ma Z Han C Li 2009 Solid State Sci. 11 43 48ADSCrossRefGoogle Scholar
  26. 26.
    RV Deun D Ndagsi J Liu IV Driessche KV Hecke AM Kaczmarek 2015 Dalton Trans. 44 15022 15030CrossRefGoogle Scholar
  27. 27.
    S Dutta S Som SK Sharma 2013 Dalton Trans. 42 9654 9661CrossRefGoogle Scholar
  28. 28.
    HR Sewall 1948 J. Opt. Soc. Am. 48 985 995Google Scholar
  29. 29.
    CS McCamy 1992 Color Res. Appl. 17 142 144CrossRefGoogle Scholar
  30. 30.
    M Soares JM Soares AJ Fernandes L Rino FM Costa T Monteiro 2011 J. Mater. Chem. 21 15262 15265CrossRefGoogle Scholar
  31. 31.
    X Guo 2004 K. W. Houser Lighting Res. Technol. 36 183 197CrossRefGoogle Scholar
  32. 32.
    JH Andres RL Lee 1999 J. Romero Appl. Optics. 38 5703 5709ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratoire de chimie des matériaux LR13ES08Université de CarthageZarzouna BizerteTunisia
  2. 2.Laboratoire de Physico-Chimie Des Matériaux Minéraux Et Leurs ApplicationsCentre National de Recherche en Sciences Des MatériauxSolimanTunisia

Personalised recommendations