Skip to main content
Log in

Cations distribution by Rietveld refinement and magnetic properties of MgCrxFe2−xO4 spinel ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnesium–chromium ferrites MgCrxFe2−xO4 (0 ≤ x ≤ 1) were studied using X-ray diffraction and magnetization measurements. Rietveld refinement of XRD patterns confirmed the cubic spinel structure in the space group Fd-3m and enabled to obtain the cations’ distribution amongst octahedral and tetrahedral sites of this structure. Magnetization measurements were performed using vibrating sample magnetometer (VSM) in the temperature range of 300–700 K and superconducting quantum interference device (SQUID) in the range of 10–300 K. Hysteresis loops for each concentration x at 300 K, show non-linear variation of saturation magnetization (MS) with chromium content. Both coercitive field and remanence decrease with increasing chromium content. MS variations with temperature indicate that the Curie temperature TC decreases with increasing chromium content. On the basis of Néel’s two sub-lattice crystal field model, the cations’ distribution enabled to calculate the theoretical magnetic moments at 0 K which are compared and discussed with those extracted by extrapolation to 0 K from MS experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, NewJersey, 2009)

    Google Scholar 

  2. E.W. Gorter, Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature 165, 798–804 (1950)

    Article  ADS  Google Scholar 

  3. J. Crangle, Solid State Magnetism (Edward Arnold Pub. Co., London, 1991)

    Book  Google Scholar 

  4. S. Mazen, N.I. Abu-Elsaad, A.S. Nawara, Influence of divalent metal ions substitution on the structural and magnetic properties of Ni-Zn spinel ferrite. Phys. Sol. State 62, 1183–1194 (2020)

    Article  Google Scholar 

  5. J. Smith, H.P. Wijn, Spinel Ferrites (Philips Tech. Lib., Eindhoven (Holland, 1959)

    Google Scholar 

  6. H. Knoch, H. Dannheim, Temperature dependence of the cation distribution in magnesium ferrite. Phys. Stat. Sol. (A) A37, K135–K137 (1976)

    Article  ADS  Google Scholar 

  7. H. Nikmanesha, M. Eshraghib, S. Karimi, Cation distribution, magnetic and structural properties of CoCrFe2O4: effect of calcination temperature and chromium substitution. J. Magn. Magn. Mater. 471, 294–303 (2019)

    Article  ADS  Google Scholar 

  8. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite International. Nano Let. 38, 1–12 (2013)

    Google Scholar 

  9. A.S. Kamzin, A.A. Valiullin, A. Bingolbali, N. Dogan, Structural transformations of Ni1−xCuxFe2O4 nanoparticles depending on copper ions. Phys. Sol. State 62, 1231–1239 (2020)

    Article  Google Scholar 

  10. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Application of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167 (2003)

    Article  ADS  Google Scholar 

  11. R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach, C. Alexiou, Drug loaded magnetic nanoparticles for cancer therapy. J. Phys.: Condens. Matter 18, S2893 (2006)

    ADS  Google Scholar 

  12. J. Philip, P.D. Shima, B. Raj, Iron oxide nanofluids and study of temperature dependence of thermal conductivity and viscosity. Appl. Phys. Lett. 92, 043108 (2008)

    Article  ADS  Google Scholar 

  13. P. Tailhades, C. Bonningue, A. Rousset, L. Bouet, I. Pasquet, S. Lebryun, Tailoring phase, microstructure and magnetic properties of nano cobalt ferrite. J. Magn. Magn. Mater. 193, 148 (1999)

    Article  ADS  Google Scholar 

  14. M.Y. Yang, S. Seong, E. Lee, M. Ghanathe, A. Kumar, S.M. Yusuf, Y. Kim, J.S. Kang, Electronic structures and magnetization reversal in Li0,5FeCr1,5O4. Appl. Phys. Lett. 116, 252401–252405 (2020)

    Article  ADS  Google Scholar 

  15. R.S. Getso, J. Mohammed, G. Mukhtar, N. Halilu, S. Sharma, A.K. Srivastava, M. Ahmad, D. Basandrai, Structural and dielectric properties of Cr substituted cobalt ferrites. J. Phys.: Conf. Ser. 1531, 12029 (2020)

    Google Scholar 

  16. K. Seshan, A.L. Shashimohan, D.K. Chakrabarty, A.B. Biswas, Effect of cation distribution on the properties of some magnesium-nickel ferrites. Phys. Status Solidi (A) 68, 97–101 (1981)

    Article  ADS  Google Scholar 

  17. S. Hossain, M.K. Hasan, S.M. Yunus, A.K.M. Zakaria, T.K. Datta, A.K. Azad, Synthesis and investigation of the structural properties of Al doped Mg ferrites. Appl. Mech. Mater. 789, 48–52 (2015)

    Article  Google Scholar 

  18. A.A. Pandit, A.R. Shitre, D.R. Shengule, K.M. Jadav, Effect of Cd2+ doping on structural and magnetic properties of magnesium ferrites. J. Mater. Sci. 40, 423 (2005)

    Article  ADS  Google Scholar 

  19. S. Raghuvanshi, P. Tiwari, S.N. Kane, D.K. Avashi, F. Mazaleyrat, T. Tatarchuk, I. Mironyuk, Dual control on structure and magnetic properties of Mg ferrite. J. Magn. Magn. Mater. 471, 521–528 (2019)

    Article  ADS  Google Scholar 

  20. M. Raghasudha, D. Ravinderb, P. Veerasomaiah, Electrical resistivity studies of Cr doped Mg nano-ferrites. Mat. Discov. 2, 50–54 (2015)

    Google Scholar 

  21. S. Hossain, M.K. Hasan, S.M. Yunus, A.K.M. Zakaria, T.K. Datta, A.K. Azad, Synthesis and investigation of the structural properties of Al3+ doped Mg ferrites. Appl. Mech. Mat. 789, 48–52 (2015)

    Article  Google Scholar 

  22. M.B. Mohamed, M. Yehia, Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite. J. Alloys Comp. 615, 181–187 (2014)

    Article  Google Scholar 

  23. A. Rais, A.M. Gismelseed, I.A. Al-Omari, Cation distribution and magnetic properties of nickel–chromium ferrites NiCrxFe2−xO4. Phys. Stat. Sol. (B) 242(7), 1497–1503 (2005)

    Article  ADS  Google Scholar 

  24. A. Rais, A.M. Gismelseed, I.A. Al-Omari, On the magnetic compensation effect of lithium-chromium ferrites Li0.5CrxFe2.5−xO4. Phys. Stat. Sol. (B) 242(14), 2949–2955 (2005)

    Article  ADS  Google Scholar 

  25. K. Sabri, A. Rais, K. Taibi, M. Moreau, B. Ouddane, A. Addou, Structural Rietveld refinement and vibrational study of MgCrxFe2−xO4 spinel ferrites. Physics B 501, 38–44 (2016)

    Article  ADS  Google Scholar 

  26. N. Bouhadouza, A. Rais, S. Kaoua, M. Moreau, K. Taibi, A. Addou, Structural and vibrational studies of NiAlFe2O4 ferrites. Ceram. Int. 41, 11687–11692 (2015)

    Article  Google Scholar 

  27. R.Y. Young, The Rietveld Method, 3rd edn. (Oxford University Press, Oxford, 1996)

    Google Scholar 

  28. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Pearson New Int, USA, 2013)

    Google Scholar 

  29. R.A. Young, D.B. Wiles, Profile shape functions in Rietveld refinements. J. Appl. Cryst. 15, 430–438 (1982)

    Article  Google Scholar 

  30. C. Suryanarayana, M. Nortan, X-ray Diffraction: A Practical Approach (Plenum Publishing Corporation, NewYork, 1998)

    Book  Google Scholar 

  31. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  Google Scholar 

  32. S. Anjum, M. Pervaiz, A. Rashid, R. Rehana, Investigation of cationic distribution, magnetic and dielectric properties of Cr-substituted Mg ferrites. J. Electron. Mater. 48, 806–816 (2019)

    Article  ADS  Google Scholar 

  33. P.P. Hankare, V.T. Vadera, N.M. Patil, S.D. Jadhava, U.B. Sankpala, M.R. Kadama, B.K. Chouguleb, N.S. Gajbhiyec, Synthesis, characterization and studies on magnetic and electrical properties of Mg ferrite with Cr substitution. Mater. Chem. Phys. 113, 233–238 (2009)

    Article  Google Scholar 

  34. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Electrical and magnetic properties of Mg-Cr and Co-Cr nano- ferrites synthesized by citrate-gel method. Sol. State Phenom. 241, 69–92 (2016)

    Article  Google Scholar 

  35. G. Vaidyanathana, R. Arulmurugana, S.D. Likhiteb, M.R. Anantharamanc, M. Vaidyad, N.D. Senthilrama, Effect of preparation on magnetic properties of Mn-Zn ferrite. Ind. J. Eng. Mater. Sci. 11, 289–294 (2004)

    Google Scholar 

  36. A. Franco, M.S. Silva, High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 109, 07B505 (2011)

    Article  Google Scholar 

  37. F. Saffari, P. Kamelin, M. Rahimi, H. Ahmadvand, H. Salamati, Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2−xO4 ferrite nanoparticles. Ceram. Int. 41, 7352–7358 (2015)

    Article  Google Scholar 

  38. S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221–228 (2009)

    Article  ADS  Google Scholar 

  39. L. Néel, Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 3, 137–198 (1948)

    Article  Google Scholar 

  40. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall Ltd., London, 1991)

    Book  Google Scholar 

  41. D.R. Kumar, S.I. Ahmad, Ch. Abraham Lincoln, D. Ravinder, Structural, optical, room-temperature and low temperature magnetic properties of Mg–Zn nanoferrite ceramics. J. Am. Ceram. Soc. 7, 53–68 (2019)

    Article  Google Scholar 

  42. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Investigation of superparamagnetism in MgCr0.9Fe1.1O4 nano-ferrites synthesized by the Citrate-gel method. J. Magn. Magn. Mater. 355, 210–214 (2014)

    Article  ADS  Google Scholar 

  43. S.P. Yadav, S.S. Shinde, P. Bhatt, S.S. Meena, K.Y. Rajpure, Distribution of cations in CoMnFe2O4 using XRD, magnetization and Mossbauer spectroscopy. J. Alloys Comp. 646, 550–556 (2015)

    Article  Google Scholar 

  44. M.M. Haque, M. Huq, M.A. Hakim, Effect of Zn2+ substitution on the magnetic properties of MgZnFe2O4 ferrites. Physics B 404, 3915–3921 (2009)

    Article  ADS  Google Scholar 

  45. P. Chirawatkul, S. Khoonsqp, S. Phumying, C. Kaewhan, S. Pinitsoontorn, S. Maensiri, Cation distribution and magnetic properties of CoMgFe2O4. J. Alloys Comp. 697, 249–256 (2017)

    Article  Google Scholar 

  46. F. Nesa, A.K.M. Zakaria, M.A. Saeed Khan, S.M. Yunus, A.K. Das, S.G. Eriksson, M.N.I. Khan, D.K. Saha, M.A. Hakim, Structural and magnetic properties of Cr-Mg ferrites. J. Cond. Mater. Phys. 2, 27–35 (2012)

    Google Scholar 

  47. U. Kobler, A. Hoser, Sol. State Commun. 142, 35014 (2007)

    Google Scholar 

  48. F.J. Dyson, Phys. Rev. 102, 1230 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  49. A.K.M. Zakaria, M.A. Asgar, S.G. Eriksson, F.U. Ahmed, S.M. Yunus, H. Rundlof, The study of magnetic ordering in the spinel system ZnxNi1−xFeCrO4 by neutron diffraction. J. Magn. Magn. Mater. 265, 311–320 (2003)

    Article  ADS  Google Scholar 

  50. V.D. Murumkar, K.B. Modi, K.M. Jadhav, G.K. Bichile, R.G. Kulkarni, Magnetic and electrical properties of aluminium and chromium co-substituted titanium ferrite. Mater. Lett. 32, 281 (1997)

    Article  Google Scholar 

  51. W.A. Bayoumya, M.A. Gabalb, Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite. J. Alloys Comp. 506, 205–209 (2010)

    Article  Google Scholar 

  52. Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290 (1952)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Directorate General for Scientific Research and Technological Development (DG-SRTD) from the Ministry of Higher Education and Scientific Research of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rais.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyahia, S., Rais, A., Bozzo, B. et al. Cations distribution by Rietveld refinement and magnetic properties of MgCrxFe2−xO4 spinel ferrites. Appl. Phys. A 126, 666 (2020). https://doi.org/10.1007/s00339-020-03865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03865-z

Keywords

Navigation