Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Extending bandgap method of concentric ring locally resonant phononic crystals

  • 54 Accesses

Abstract

Locally resonant phononic crystals (LRPCs) have the capacity to adjust elastic waves with the structure sizes much smaller than the incident wavelengths, the unique property is called low-frequency bandgap, but it is not easily applied in practical engineering because of narrow bandgap width. Multilayered LRPCs are helpful in generating several bandgaps, in the meanwhile the designs of multilayered LRPCs proposed in previous study result in the larger filling fraction, whereas the bandwidth of LRPCs increases monotonically with filling fraction, thus the pure contribution of concentric ring configuration to the bandwidth extending is less involved. Keeping the filling fraction constant, this paper carefully designs the microstructure of concentric ring locally resonant phononic crystals, and investigates the effects of structure configuration on the bandgap property. To this end, an updated improved plane wave expansion (UIPWE) method is developed to calculate the band structure, and finite element method (FEM) is used to obtain transmission spectra and vibration mode. The results demonstrate that UIPWE method is valid and is able to give precise outcomes, which is verified by FEM. In addition, the concentric ring configuration equivalently produces dual-oscillator system, relative movements between the oscillators generate coupling effect, thus, the bandgaps can be extended by configurating rightly the microstructure of single cell. Further studies about different models indicate that the combination of smaller inner scatterers and larger inner coating layers are beneficial to wider bandgap. These conclusions presented herein provide insights in the design of three-component PCs in multi-frequency vibration control field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    M.M. Sigalas, E.N. Economou, J. Sound Vib. 158, 377–382 (1992)

  2. 2.

    M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022–2025 (1993)

  3. 3.

    P.A. Deymier, Acoustic Metamaterials and Phononic Crystals (Springer Science & Business Media, Tucson, 2013), pp. 1–6

  4. 4.

    R.V. Craster, S. Guenneau, Acoustic Metamaterials (Springer Science & Business Media, London, 2012), pp. 5–6

  5. 5.

    J. Wen, G. Wang, D. Yu, H. Zhao, Y. Liu, J. Appl. Phys. 97, 114907 (2005)

  6. 6.

    X.B. Pu, Z.F. Shi, Soil Dyn. Earthq. Eng. 121, 75–86 (2019)

  7. 7.

    X.B. Pu, Z.F. Shi, Constr. Build. Mater. 180, 177–187 (2018)

  8. 8.

    J.K. Huang, Z.F. Shi, J. Sound Vib. 332, 4423–4439 (2013)

  9. 9.

    Y. Pennec, B. Djafari-Rouhani, J.O. Vasseur, A. Khelif, P.A. Deymier, Phys. Rev. E 69, 046608 (2004)

  10. 10.

    P. Li, L. Cheng, Ultrasonics 77, 100–109 (2017)

  11. 11.

    V. Romero-García, C. Lagarrigue, J.P. Groby, O. Richoux, V. Tournat, J. Phys. D Appl. Phys. 46, 305108 (2013)

  12. 12.

    Y.Y. Chen, L.C. Huang, W.S. Wang, Y.C. Lin, T.T. Wu, J.H. Sun, M. Esashi, Appl. Phys. Lett. 102(5), 153514 (2013)

  13. 13.

    S. Villa-Arango, R. Torres, P.A. Kyriacou, R. Lucklum, Measurement 102, 20–25 (2017)

  14. 14.

    A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, V. Laude, Appl. Phys. Lett. 84, 4400–4402 (2004)

  15. 15.

    Y.B. Jin, N. Fernez, Y. Pennec, B. Bonello, R.P. Moiseyenko, S. Hemon, Y.D. Pan, B. Djafari-Rouhani, Phys. Rev. B 93(8), 054109 (2016)

  16. 16.

    X.P. Wang, P. Jiang, T.N. Chen, J. Zhu, AIP Adv. 5(10), 107141 (2015)

  17. 17.

    J.M. Escalante, A. Martínez, V. Laude, J. Phys. D Appl. Phys. 46, 475301 (2013)

  18. 18.

    W.M. Kuang, Z.L. Hou, Y.Y. Liu, Phys. Lett. A 332, 481–490 (2004)

  19. 19.

    A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Phys. Rev. E 74, 046610 (2006)

  20. 20.

    Y. Cao, Z. Hou, Y. Liu, Phys. Lett. A 327, 247–253 (2004)

  21. 21.

    J.O. Vasseur, P.A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Phys. Rev. Lett. 86, 3012 (2001)

  22. 22.

    C. Goffaux, J.P. Vigneron, Phys. Rev. B 64, 075118 (2001)

  23. 23.

    J.O. Vasseur, P.A. Deymier, G. Frantziskonis, G. Hong, B. Djafari-Rouhani, L. Dobrzynski, J. Phys. Condens. Matter 10, 6051–6064 (1998)

  24. 24.

    Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y.Y. Zhu, Z.Y. Yang, C.T. Chan, P. Sheng, Science 289, 1734–1736 (2000)

  25. 25.

    C. Li, L.C. Miao, Q. You, H.L. Fang, X.D. Liang, L.J. Lei, Appl. Phys. A Mater. 125(12), 170 (2019)

  26. 26.

    T.X. Ma, X.X. Su, Y.S. Wang, Y.F. Wang, Phys. Screen 87(10), 055604 (2013)

  27. 27.

    X.M. Zhou, G.K. Hu, Phys. Rev. B 79(9), 195109 (2009)

  28. 28.

    M. Hirsekorn, Appl. Phys. Lett. 84, 3364–3366 (2004)

  29. 29.

    G. Wang, L.H. Shao, Y.Z. Liu, J.H. Wen, Chin. Phys. 15, 1843–1848 (2006)

  30. 30.

    Y. Yao, F. Wu, X. Zhang, Z. Hou, Phys. Lett. A 376, 579–583 (2012)

  31. 31.

    M. Chen, D. Meng, H. Jiang, Y.R. Wang, Shock Vib. 12, 1369858 (2018)

  32. 32.

    A.O. Krushynska, M. Miniaci, V.G. Kouznetsova, M.G.D. Geers, J. Vib. Acoust. Trans. ASME 139(4), 024501 (2017)

  33. 33.

    J.S. Chen, I.L. Chang, W.T. Huang, L.W. Chen, G.H. Huang, AIP Adv. 6(11), 095020 (2016)

  34. 34.

    L.X. Li, A.J. Cai, Jpn. J. Appl. Phys. 55, 067301 (2016)

  35. 35.

    Z.B. Cheng, Z.F. Shi, Y.L. Mo, H.J. Xiang, J. Appl. Phys. 114(9), 033532 (2013)

  36. 36.

    H. Larabi, Y. Pennec, B.D. Afari-Rouhani, J.O. Vasseur, in 12th International Conference on Phonon Scattering in Condensed Matter, ed by B. Perrin et al. (Iop Publishing Ltd, Bristol, 2007)

  37. 37.

    H. Larabi, Y. Pennec, B. Djafari-Rouhani, J.O. Vasseur, Phys. Rev. E 75, 066601 (2007)

  38. 38.

    C.C. Liu, C. Reina, J. Appl. Phys. 123(10), 095108 (2018)

  39. 39.

    X.C. Xu, M.V. Barnhart, X.P. Li, Y.Y. Chen, G.L. Huang, J. Sound Vib. 442, 237–248 (2019)

  40. 40.

    X. Zhou, C. Chen, Phys. B 431, 23–31 (2013)

  41. 41.

    X. Zhou, Y. Xu, Y. Liu, L. Lv, F. Peng, L. Wang, Appl. Acoust. 133, 97–106 (2018)

  42. 42.

    G. Wang, X.S. Wen, J.H. Wen, L.H. Shao, Y.Z. Liu, Phys. Rev. Lett. 93(4), 154302 (2004)

  43. 43.

    C. Goffaux, J. Sánchez-Dehesa, Phys. Rev. B 67, 144301 (2003)

  44. 44.

    A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, B. Aoubiza, Phys. Rev. B 81, 214303 (2010)

  45. 45.

    L. Li, J. Opt. Soc. Am. A 13, 1870–1876 (1996)

  46. 46.

    H. Zhao, Y. Liu, G. Wang, J. Wen, D. Yu, X. Han, X. Wen, Phys. Rev. B 72, 012301 (2005)

Download references

Author information

Correspondence to Linchang Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Miao, L., Li, C. et al. Extending bandgap method of concentric ring locally resonant phononic crystals. Appl. Phys. A 126, 96 (2020). https://doi.org/10.1007/s00339-019-3277-2

Download citation

Keywords

  • Phononic crystal
  • Locally resonant bandgap
  • Dual-oscillator
  • Bandgap tunability
  • Improved plane wave expansion