Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Toroidal dipole-induced coherent forward scattering from a miniaturized cloaking structure

  • 52 Accesses


The physical existence of microwave toroidal dipole in a dogbone metallic inclusion-based miniaturized cloaking structure is verified in this paper. The excitation of toroidal dipole moments on the studied composite is verified using multipole scattering formalism. The presence of the toroidal Fano resonance significantly enhances resonant forward scattering from the structure for normal incidence. Multipolar contribution from the electric, magnetic and toroidal moments significantly enhances the scattering cross-section of the composite as compared to a bare cylindrical metallic object. Applicability of the proposed scheme is tested inside an anechoic chamber using reflection measurements on the fabricated structure and is subsequently validated in computer simulations in the microwave frequency regime.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Hoboken, 1983)

  2. 2.

    M. Kerker, D.S. Wang, L. Giles, Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983)

  3. 3.

    T.A. Milligan, Modern Antenna Design (Wiley, Hoboken, 2005)

  4. 4.

    P. Alitalo, A.O. Karilainen, T. Niemi, C.R. Simovski, S.A. Tretyakov, Design and realisation of an electrically small Huygens source for circular polarization. IET Microw. Antennas Propag. 5, 783–789 (2011)

  5. 5.

    R.W. Ziolkowski, Low profile, broadside radiating, electrically small Huygens source antennas. IEEE Access 3, 2644–2651 (2015)

  6. 6.

    R.W. Ziolkowski, Using Huygens multipole arrays to realize unidirectional needle-like radiation. Phys. Rev. X 7, 031017 (2017)

  7. 7.

    A.E. Miroshnichenko, B. Luk’yanchuk, S.A. Maier, Y.S. Kivshar, Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012)

  8. 8.

    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

  9. 9.

    B.O. Zhu, J. Zhao, Y. Feng, Active impedance metasurface with full 3600 reflection phase tuning. Nat. Sci. Rep. 49, 1–6 (2013)

  10. 10.

    B.O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, Y. Feng, Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Nat. Sci. Rep. 4, 1–7 (2014)

  11. 11.

    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999)

  12. 12.

    I.B. Zel'dovich, The relation between decay asymmetry and dipole moment of elementary particles. Phys. JETP 6, 1184 (1958)

  13. 13.

    G.N. Afanasiev, Y.P. Stepanovsky, The electromagnetic field of elementary time-dependent toroidal sources. J. Phys. A Math. Gen. 28, 4565 (1995)

  14. 14.

    L.-Y. Guo, M.-H. Li, X.-J. Huang, H.-L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion. Appl. Phys. Lett. 105, 033507 (2014)

  15. 15.

    T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Toroidal dipolar response in a metamaterial. Science 330, 1510–1512 (2010)

  16. 16.

    Manoj Gupta, Vassili Savinov, Ningning Xu, Longqing Cong, Govind Dayal, Shuang Wang,Weili Zhang, Nikolay I. Zheludev, Ranjan Singh, Sharp Toroidal Resonances in Planar Terahertz Metasurfaces., Adv. Mater. 201601611, 1–6 (2016).

  17. 17.

    M. Gupta, R. Singh, Toroidal versus fano resonances in high Q planar THz metamaterials. Adv. Opt. Mat. 201600553, 1–7 (2016)

  18. 18.

    A.C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Toroidal eigenmodes in all-dielectric metamolecules. Phys. Rev. B 94, 205433 (2016)

  19. 19.

    A.E. Miroshnichenko, A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk'yanchuk, B.N. Chichkov, Y.S. Kivshar, Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

  20. 20.

    N.A. Nemkov, I.V. Stenishchev, A.A. Basharin, Nontrivial nonradiating all-dielectric anapole. Nat. Sci. Rep. 7, 1064 (2017)

  21. 21.

    A.A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, E.N. Economou, Extremely high Q-factor metamaterials due to anapole excitation. Phys. Rev. B 95, 035104 (2017)

  22. 22.

    P.C. Wu, C.Y. Liao, V. Savinov, T.L. Chung, W.T. Chen, Y.-W. Huang, P.R. Wu, Y.-H. Chen, A.-Q. Liu, N.I. Zheludev, D.P. Tsai, Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018)

  23. 23.

    I.V. Stenishchev, A.A. Basharin, Toroidal response in all-dielectric metamaterials based on water. Nat. Sci. Rep. 7, 9468 (2017)

  24. 24.

    V.P. Sarin, M.P. Jayakrishnan, P.V. Vinesh, C.K. Aanandan, P. Mohanan, K. Vasudevan, An experimental realization of cylindrical cloaking using dogbone metamaterials. Can. J. Phys. 95, 927–932 (2017)

  25. 25.

    G. Donzelli, A. Vallecchi, F. Capolino, A. Schuchinsky, Meta-material made of paired planar conductors: particle resonances, phenomena and properties. Metamaterials 3, 10–27 (2009)

  26. 26.

    S.V. Pushpakaran, J.M. Purushothama, M. Mani, A. Chandroth, M. Pezholil, V. Kesavath, A metamaterial absorber based high gain directional dipole antenna. Int. J. Microw. Wirel. Technol. 10, 430–436 (2018)

  27. 27.

    M.V. Rybin, P.V. Kapitanova, D.S. Filonov, A.P. Slobozhanyuk, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Fano resonances in antennas: general control over radiation patterns. Phys. Rev. B 88, 205106 (2013)

  28. 28.

    S.V. Pushpakaran, N.M. SeidMuhammed, R.K. Raj, A. Pradeep, P. Mohanan, K. Vasudevan, A Compact stacked dipole antenna with directional radiation coverage for wireless applications. IEEE Antenna Wirel. Propag. Lett. 12, 841–844 (2013)

Download references


The authors acknowledge the research funding received from the Science and Engineering Research Board (SERB), Department of Science and Technology for the major research project ECR/2017/002204.

Author information

Correspondence to V. P. Sarin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarin, V.P., Vinesh, P.V., Manoj, M. et al. Toroidal dipole-induced coherent forward scattering from a miniaturized cloaking structure. Appl. Phys. A 126, 90 (2020).

Download citation


  • Dogbone metamaterial
  • Forward scattering
  • Toroidal dipole