Advertisement

Applied Physics A

, 126:90 | Cite as

Toroidal dipole-induced coherent forward scattering from a miniaturized cloaking structure

  • V. P. SarinEmail author
  • P. V. Vinesh
  • M. Manoj
  • C. K. Aanandan
  • P. Mohanan
  • K. Vasudevan
Article

Abstract

The physical existence of microwave toroidal dipole in a dogbone metallic inclusion-based miniaturized cloaking structure is verified in this paper. The excitation of toroidal dipole moments on the studied composite is verified using multipole scattering formalism. The presence of the toroidal Fano resonance significantly enhances resonant forward scattering from the structure for normal incidence. Multipolar contribution from the electric, magnetic and toroidal moments significantly enhances the scattering cross-section of the composite as compared to a bare cylindrical metallic object. Applicability of the proposed scheme is tested inside an anechoic chamber using reflection measurements on the fabricated structure and is subsequently validated in computer simulations in the microwave frequency regime.

Keywords

Dogbone metamaterial Forward scattering Toroidal dipole 

Notes

Acknowledgements

The authors acknowledge the research funding received from the Science and Engineering Research Board (SERB), Department of Science and Technology for the major research project ECR/2017/002204.

References

  1. 1.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Hoboken, 1983)Google Scholar
  2. 2.
    M. Kerker, D.S. Wang, L. Giles, Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    T.A. Milligan, Modern Antenna Design (Wiley, Hoboken, 2005)CrossRefGoogle Scholar
  4. 4.
    P. Alitalo, A.O. Karilainen, T. Niemi, C.R. Simovski, S.A. Tretyakov, Design and realisation of an electrically small Huygens source for circular polarization. IET Microw. Antennas Propag. 5, 783–789 (2011)CrossRefGoogle Scholar
  5. 5.
    R.W. Ziolkowski, Low profile, broadside radiating, electrically small Huygens source antennas. IEEE Access 3, 2644–2651 (2015)CrossRefGoogle Scholar
  6. 6.
    R.W. Ziolkowski, Using Huygens multipole arrays to realize unidirectional needle-like radiation. Phys. Rev. X 7, 031017 (2017)Google Scholar
  7. 7.
    A.E. Miroshnichenko, B. Luk’yanchuk, S.A. Maier, Y.S. Kivshar, Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012)CrossRefGoogle Scholar
  8. 8.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    B.O. Zhu, J. Zhao, Y. Feng, Active impedance metasurface with full 3600 reflection phase tuning. Nat. Sci. Rep. 49, 1–6 (2013)Google Scholar
  10. 10.
    B.O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, Y. Feng, Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Nat. Sci. Rep. 4, 1–7 (2014)Google Scholar
  11. 11.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999)zbMATHGoogle Scholar
  12. 12.
    I.B. Zel'dovich, The relation between decay asymmetry and dipole moment of elementary particles. Phys. JETP 6, 1184 (1958)ADSGoogle Scholar
  13. 13.
    G.N. Afanasiev, Y.P. Stepanovsky, The electromagnetic field of elementary time-dependent toroidal sources. J. Phys. A Math. Gen. 28, 4565 (1995)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L.-Y. Guo, M.-H. Li, X.-J. Huang, H.-L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion. Appl. Phys. Lett. 105, 033507 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Toroidal dipolar response in a metamaterial. Science 330, 1510–1512 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Manoj Gupta, Vassili Savinov, Ningning Xu, Longqing Cong, Govind Dayal, Shuang Wang,Weili Zhang, Nikolay I. Zheludev, Ranjan Singh, Sharp Toroidal Resonances in Planar Terahertz Metasurfaces., Adv. Mater. 201601611, 1–6 (2016).Google Scholar
  17. 17.
    M. Gupta, R. Singh, Toroidal versus fano resonances in high Q planar THz metamaterials. Adv. Opt. Mat. 201600553, 1–7 (2016)Google Scholar
  18. 18.
    A.C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Toroidal eigenmodes in all-dielectric metamolecules. Phys. Rev. B 94, 205433 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Miroshnichenko, A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk'yanchuk, B.N. Chichkov, Y.S. Kivshar, Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    N.A. Nemkov, I.V. Stenishchev, A.A. Basharin, Nontrivial nonradiating all-dielectric anapole. Nat. Sci. Rep. 7, 1064 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, E.N. Economou, Extremely high Q-factor metamaterials due to anapole excitation. Phys. Rev. B 95, 035104 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    P.C. Wu, C.Y. Liao, V. Savinov, T.L. Chung, W.T. Chen, Y.-W. Huang, P.R. Wu, Y.-H. Chen, A.-Q. Liu, N.I. Zheludev, D.P. Tsai, Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018)CrossRefGoogle Scholar
  23. 23.
    I.V. Stenishchev, A.A. Basharin, Toroidal response in all-dielectric metamaterials based on water. Nat. Sci. Rep. 7, 9468 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    V.P. Sarin, M.P. Jayakrishnan, P.V. Vinesh, C.K. Aanandan, P. Mohanan, K. Vasudevan, An experimental realization of cylindrical cloaking using dogbone metamaterials. Can. J. Phys. 95, 927–932 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    G. Donzelli, A. Vallecchi, F. Capolino, A. Schuchinsky, Meta-material made of paired planar conductors: particle resonances, phenomena and properties. Metamaterials 3, 10–27 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    S.V. Pushpakaran, J.M. Purushothama, M. Mani, A. Chandroth, M. Pezholil, V. Kesavath, A metamaterial absorber based high gain directional dipole antenna. Int. J. Microw. Wirel. Technol. 10, 430–436 (2018)CrossRefGoogle Scholar
  27. 27.
    M.V. Rybin, P.V. Kapitanova, D.S. Filonov, A.P. Slobozhanyuk, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Fano resonances in antennas: general control over radiation patterns. Phys. Rev. B 88, 205106 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    S.V. Pushpakaran, N.M. SeidMuhammed, R.K. Raj, A. Pradeep, P. Mohanan, K. Vasudevan, A Compact stacked dipole antenna with directional radiation coverage for wireless applications. IEEE Antenna Wirel. Propag. Lett. 12, 841–844 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • V. P. Sarin
    • 1
    Email author
  • P. V. Vinesh
    • 1
  • M. Manoj
    • 2
  • C. K. Aanandan
    • 2
  • P. Mohanan
    • 2
  • K. Vasudevan
    • 2
  1. 1.Department of ElectronicsGovernment College ChitturPalakkadIndia
  2. 2.Centre for Research in Electromagnetics and AntennasCochin University of Science and TechnologyCochinIndia

Personalised recommendations