Applied Physics A

, 126:100 | Cite as

A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes

  • Kumar Navin
  • Rajnish KurchaniaEmail author


A comparative study of the structural, magnetic, transport and electrochemical properties of the La0.7Sr0.3MnO3 (LSMO) synthesized by sol–gel, solution combustion and solid-state reaction has been discussed in details. Synthesis process controls the structure and morphology of the material which determine the overall characteristics of the material. The sol–gel and solution combustion method provide nanocrystalline material with an average particle size of 23.03 nm 17.9 nm, respectively; while, microcrystalline material with an average particle size of 160 nm is synthesized by solid-state reaction method. The magnetic properties of the material are improved with an increase in particle size from nanoscale to microscale, while resistivity increases with a reduction in the size of the material. The LSMO synthesized by the sol–gel method shows the highest magnetoresistance of 32.3% at 10 K with a 1T magnetic field. The solution combustion method provides LSMO nanoparticles with large surface area and porosity which results in its better electrochemical behavior as compared to the LSMO synthesized by sol–gel and solid-state reaction.


LSMO nanoparticles Sol–gel Magnetoresistance Supercapacitance 



The authors want to thank UGC-DAE, CSR for providing the experimental facility. Kumar Navin is thankful to the MHRD, Government of India and Director, MANIT, for institute fellowship and providing infrastructure to carry out this research work.


  1. 1.
    N. Thorat, K. Shinde, S. Pawar, K. Barick, C. Betty, R. Ningthoujam, Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans. 41(10), 3060–3071 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Liang, J. Liu, Y. Zhang, L. Luo, H. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. B Eng. 178, 107507 (2019)CrossRefGoogle Scholar
  3. 3.
    H. Wu, D. Lan, B. Li, L. Zhang, Y. Fu, Y. Zhang, H. Xing, High-entropy alloy@ air@ Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos. B Eng. 179, 107524 (2019)CrossRefGoogle Scholar
  4. 4.
    D. Lan, M. Qin, J. Liu, G. Wu, Y. Zhang, H. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020)CrossRefGoogle Scholar
  5. 5.
    J. Liu, H. Liang, Y. Zhang, G. Wu, H. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. B Eng. 176, 107240 (2019)CrossRefGoogle Scholar
  6. 6.
    K. Omri, J. El Ghoul, O. Lemine, M. Bououdina, B. Zhang, L. El Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60, 139–147 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Omri, O. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green–yellow emission and magnetic properties. Ceram. Int. 43(8), 6585–6591 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym Mater. 29(1), 203–212 (2019)CrossRefGoogle Scholar
  9. 9.
    M. Soleymani, M. Edrissi, A.M. Alizadeh, Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems. Polym. J. 47(12), 797 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Shinde, S. Pawar, N. Deshpande, J. Kim, Y. Lee, S. Pawar, Magnetocaloric effect in LSMO synthesized by combustion route. Mater. Chem. Phys. 129(1–2), 180–182 (2011)CrossRefGoogle Scholar
  11. 11.
    H.A. Reshi, A.P. Singh, S. Pillai, R.S. Yadav, S. Dhawan, V. Shelke, Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 3(4), 820–827 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Miyazaki, N. Sugimura, K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Perovskite-type oxides La1−xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J. Power Sources 178(2), 683–686 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A. Molinari, P.M. Leufke, C. Reitz, S. Dasgupta, R. Witte, R. Kruk, H. Hahn, Hybrid supercapacitors for reversible control of magnetism. Nat. Commun. 8, 15339 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    X. Yu, T. Sun, Q. Chen, Y. Duan, X. Liu, Modulation of room-temperature TCR and MR in La 1−xSrxMnO3 polycrystalline ceramics via Sr doping. J. Sol–Gel. Sci. Technol. 90(2), 221–229 (2019)CrossRefGoogle Scholar
  15. 15.
    K. Navin, R. Kurchania, The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles. Ceram. Int. 44(5), 4973–4980 (2018)CrossRefGoogle Scholar
  16. 16.
    K. Navin, R. Kurchania, Structural, magnetic and transport properties of the La0.7Sr0.3MnO3–ZnO nanocomposites. J. Magn. Magn. Mater. 448, 228–235 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    X. Chen, J. Fu, C. Yun, H. Zhao, Y. Yang, H. Du, J. Han, C. Wang, S. Liu, Y. Zhang, Magnetic and transport properties of cobalt doped La0.7Sr0.3MnO3. J. Appl. Phys. 116(10), 103907 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhou, X. Zhu, S. Li, Effect of heat treatment condition on magnetic, electric transport, and magnetoresistance properties of La0.67Sr0.33MnO3 manganite coatings. Ceram. Int. 44, 15010–15018 (2018)CrossRefGoogle Scholar
  19. 19.
    A.D. Souza, P.D. Babu, S. Rayaprol, M.S. Murari, L.D. Mendonca, M. Daivajna, Size control on magnetism of La0.7Sr0.3MnO3. J. Alloys Compd. 797, 874–882 (2019)CrossRefGoogle Scholar
  20. 20.
    Y. Zhou, X. Zhu, S. Li, Effect of particle size on magnetic and electric transport properties of La0.67Sr0.33MnO3 coatings. Phys. Chem. Chem. Phys. 17(46), 31161–31169 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Molinari, H. Hahn, R. Kruk, Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv. Mater. 30(1), 1703908 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Navin, R. Kurchania, Structural, magnetic and electrochemical properties of LSMO–ZnO core–shell nanostructure. Mater. Chem. Phys. 234, 25–31 (2019)CrossRefGoogle Scholar
  23. 23.
    J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13(7), 726 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    X. Wang, Q. Zhu, X. Wang, H. Zhang, J. Zhang, L. Wang, Structural and electrochemical properties of La0.85Sr0.15MnO3 powder as an electrode material for supercapacitor. J. Alloys Compd. 675, 195–200 (2016)CrossRefGoogle Scholar
  25. 25.
    Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, Z. Sun, J. Chen, Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol–gel method as high-performance supercapacitor electrodes. Electrochim. Acta 253, 422–429 (2017)CrossRefGoogle Scholar
  26. 26.
    H.A. Reshi, S. Pillai, V. Shelke, Comparative study on multifunctional behaviour of rare earth manganites with micro and nano grain size. J. Mater. Sci. Mater. Electron. 25(9), 3795–3800 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Spooren, A. Rumplecker, F. Millange, R. Walton, Subcritical hydrothermal synthesis of perovskite manganites: a direct and rapid route to complex transition-metal oxides. Chem. Mater. 15(7), 1401–1403 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Sadhu, S. Bhattacharyya, Enhanced low-field magnetoresistance in La0.71Sr0.29MnO3 nanoparticles synthesized by the nonaqueous sol–gel route. Chem. Mater. 26(4), 1702–1710 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Dubey, O. Subohi, R. Kurchania, A comparative study of the properties of five-layered aurivillius oxides A2Bi4Ti5O18 (A = Ba, Pb, and Sr) synthesized by different wet chemical routes. Appl. Phys. A 124(7), 461 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    J. Rodriguez-Carvajal, FULL PROF Version 300 (Laboratorie Leon Brillioun, CEA-CNRS, Saclay, 1995)Google Scholar
  31. 31.
    X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La1−x SrxMnO3. Dalton Trans. 46(40), 13720–13730 (2017)CrossRefGoogle Scholar
  32. 32.
    S.K. Gupta, M. Sahu, P. Ghosh, D. Tyagi, M. Saxena, R. Kadam, Energy transfer dynamics and luminescence properties of Eu3+ in CaMoO4 and SrMoO4. Dalton Trans. 44(43), 18957–18969 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Kubo, N. Ohata, A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21–32 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    H. Baaziz, A. Tozri, E. Dhahri, E. Hlil, Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram. Int. 41(2), 2955–2962 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Curiale, M. Granada, H. Troiani, R. Sánchez, A. Leyva, P. Levy, K. Samwer, Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl. Phys. Lett. 95(4), 043106 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    S. Trukhanov, L. Lobanovski, M. Bushinsky, V. Khomchenko, N. Pushkarev, I. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Influence of oxygen vacancies on the magnetic and electrical properties of La1−x SrxMnO{3−x/2} manganites. Eur. Phys. J. B 42(1), 51–61 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    H.A. Reshi, S. Pillai, R.S. Yadav, T.A. Para, U. Deshpande, T. Shripathi, V. Shelke, Kondo-like electronic transport and ferromagnetic cluster-glass behavior in La0.7Sr0.3MnO3 nanostructures. RSC Adv. 5(104), 85950–85956 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Trukhanov, I.O. Troyanchuk, A. Trukhanov, I. Fita, A. Vasil’ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. J. Exp. Theor. Phys. Lett. 83(1), 33–36 (2006)CrossRefGoogle Scholar
  39. 39.
    K. Das, B. Satpati, I. Das, The effect of artificial grain boundaries on magneto-transport properties of charge ordered-ferromagnetic nanocomposites. RSC Adv. 5(35), 27338–27346 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Zhang, Y. Xu, S. Cao, G. Cao, Y. Zhang, C. Jing, Kondo-like transport and its correlation with the spin-glass phase in perovskite manganites. Phys. Rev. B 72(5), 054410 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Spin- polarised intergrain tunnelling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    H. Mo, H. Nan, X. Lang, S. Liu, L. Qiao, X. Hu, H. Tian, Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram. Int. 44(8), 9733–9741 (2018)CrossRefGoogle Scholar
  43. 43.
    G.R. Li, Z.L. Wang, F.L. Zheng, Y.N. Ou, Y.X. Tong, ZnO@ MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. A 21(12), 4217–4221 (2011)CrossRefGoogle Scholar
  44. 44.
    X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ ZnO core–shell nanocomposites for supercapacitor applications. Sci. Rep. 7, 40167 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    J. Lü, Y. Zhang, Z. Lü, X. Huang, Z. Wang, X. Zhu, B. Wei, A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite. RSC Adv. 5(8), 5858–5862 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Functional Nanomaterials Laboratory, Nanoscience and Engineering Centre, Department of PhysicsMaulana Azad National Institute of Technology (MANIT)BhopalIndia

Personalised recommendations