Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes

  • 33 Accesses


A comparative study of the structural, magnetic, transport and electrochemical properties of the La0.7Sr0.3MnO3 (LSMO) synthesized by sol–gel, solution combustion and solid-state reaction has been discussed in details. Synthesis process controls the structure and morphology of the material which determine the overall characteristics of the material. The sol–gel and solution combustion method provide nanocrystalline material with an average particle size of 23.03 nm 17.9 nm, respectively; while, microcrystalline material with an average particle size of 160 nm is synthesized by solid-state reaction method. The magnetic properties of the material are improved with an increase in particle size from nanoscale to microscale, while resistivity increases with a reduction in the size of the material. The LSMO synthesized by the sol–gel method shows the highest magnetoresistance of 32.3% at 10 K with a 1T magnetic field. The solution combustion method provides LSMO nanoparticles with large surface area and porosity which results in its better electrochemical behavior as compared to the LSMO synthesized by sol–gel and solid-state reaction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    N. Thorat, K. Shinde, S. Pawar, K. Barick, C. Betty, R. Ningthoujam, Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans. 41(10), 3060–3071 (2012)

  2. 2.

    H. Liang, J. Liu, Y. Zhang, L. Luo, H. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Compos. B Eng. 178, 107507 (2019)

  3. 3.

    H. Wu, D. Lan, B. Li, L. Zhang, Y. Fu, Y. Zhang, H. Xing, High-entropy alloy@ air@ Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos. B Eng. 179, 107524 (2019)

  4. 4.

    D. Lan, M. Qin, J. Liu, G. Wu, Y. Zhang, H. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020)

  5. 5.

    J. Liu, H. Liang, Y. Zhang, G. Wu, H. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. B Eng. 176, 107240 (2019)

  6. 6.

    K. Omri, J. El Ghoul, O. Lemine, M. Bououdina, B. Zhang, L. El Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60, 139–147 (2013)

  7. 7.

    K. Omri, O. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green–yellow emission and magnetic properties. Ceram. Int. 43(8), 6585–6591 (2017)

  8. 8.

    K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym Mater. 29(1), 203–212 (2019)

  9. 9.

    M. Soleymani, M. Edrissi, A.M. Alizadeh, Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems. Polym. J. 47(12), 797 (2015)

  10. 10.

    K. Shinde, S. Pawar, N. Deshpande, J. Kim, Y. Lee, S. Pawar, Magnetocaloric effect in LSMO synthesized by combustion route. Mater. Chem. Phys. 129(1–2), 180–182 (2011)

  11. 11.

    H.A. Reshi, A.P. Singh, S. Pillai, R.S. Yadav, S. Dhawan, V. Shelke, Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 3(4), 820–827 (2015)

  12. 12.

    K. Miyazaki, N. Sugimura, K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Perovskite-type oxides La1−xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J. Power Sources 178(2), 683–686 (2008)

  13. 13.

    A. Molinari, P.M. Leufke, C. Reitz, S. Dasgupta, R. Witte, R. Kruk, H. Hahn, Hybrid supercapacitors for reversible control of magnetism. Nat. Commun. 8, 15339 (2017)

  14. 14.

    X. Yu, T. Sun, Q. Chen, Y. Duan, X. Liu, Modulation of room-temperature TCR and MR in La 1−xSrxMnO3 polycrystalline ceramics via Sr doping. J. Sol–Gel. Sci. Technol. 90(2), 221–229 (2019)

  15. 15.

    K. Navin, R. Kurchania, The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles. Ceram. Int. 44(5), 4973–4980 (2018)

  16. 16.

    K. Navin, R. Kurchania, Structural, magnetic and transport properties of the La0.7Sr0.3MnO3–ZnO nanocomposites. J. Magn. Magn. Mater. 448, 228–235 (2018)

  17. 17.

    X. Chen, J. Fu, C. Yun, H. Zhao, Y. Yang, H. Du, J. Han, C. Wang, S. Liu, Y. Zhang, Magnetic and transport properties of cobalt doped La0.7Sr0.3MnO3. J. Appl. Phys. 116(10), 103907 (2014)

  18. 18.

    Y. Zhou, X. Zhu, S. Li, Effect of heat treatment condition on magnetic, electric transport, and magnetoresistance properties of La0.67Sr0.33MnO3 manganite coatings. Ceram. Int. 44, 15010–15018 (2018)

  19. 19.

    A.D. Souza, P.D. Babu, S. Rayaprol, M.S. Murari, L.D. Mendonca, M. Daivajna, Size control on magnetism of La0.7Sr0.3MnO3. J. Alloys Compd. 797, 874–882 (2019)

  20. 20.

    Y. Zhou, X. Zhu, S. Li, Effect of particle size on magnetic and electric transport properties of La0.67Sr0.33MnO3 coatings. Phys. Chem. Chem. Phys. 17(46), 31161–31169 (2015)

  21. 21.

    A. Molinari, H. Hahn, R. Kruk, Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv. Mater. 30(1), 1703908 (2018)

  22. 22.

    K. Navin, R. Kurchania, Structural, magnetic and electrochemical properties of LSMO–ZnO core–shell nanostructure. Mater. Chem. Phys. 234, 25–31 (2019)

  23. 23.

    J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13(7), 726 (2014)

  24. 24.

    X. Wang, Q. Zhu, X. Wang, H. Zhang, J. Zhang, L. Wang, Structural and electrochemical properties of La0.85Sr0.15MnO3 powder as an electrode material for supercapacitor. J. Alloys Compd. 675, 195–200 (2016)

  25. 25.

    Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, Z. Sun, J. Chen, Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol–gel method as high-performance supercapacitor electrodes. Electrochim. Acta 253, 422–429 (2017)

  26. 26.

    H.A. Reshi, S. Pillai, V. Shelke, Comparative study on multifunctional behaviour of rare earth manganites with micro and nano grain size. J. Mater. Sci. Mater. Electron. 25(9), 3795–3800 (2014)

  27. 27.

    J. Spooren, A. Rumplecker, F. Millange, R. Walton, Subcritical hydrothermal synthesis of perovskite manganites: a direct and rapid route to complex transition-metal oxides. Chem. Mater. 15(7), 1401–1403 (2003)

  28. 28.

    A. Sadhu, S. Bhattacharyya, Enhanced low-field magnetoresistance in La0.71Sr0.29MnO3 nanoparticles synthesized by the nonaqueous sol–gel route. Chem. Mater. 26(4), 1702–1710 (2014)

  29. 29.

    S. Dubey, O. Subohi, R. Kurchania, A comparative study of the properties of five-layered aurivillius oxides A2Bi4Ti5O18 (A = Ba, Pb, and Sr) synthesized by different wet chemical routes. Appl. Phys. A 124(7), 461 (2018)

  30. 30.

    J. Rodriguez-Carvajal, FULL PROF Version 300 (Laboratorie Leon Brillioun, CEA-CNRS, Saclay, 1995)

  31. 31.

    X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La1−x SrxMnO3. Dalton Trans. 46(40), 13720–13730 (2017)

  32. 32.

    S.K. Gupta, M. Sahu, P. Ghosh, D. Tyagi, M. Saxena, R. Kadam, Energy transfer dynamics and luminescence properties of Eu3+ in CaMoO4 and SrMoO4. Dalton Trans. 44(43), 18957–18969 (2015)

  33. 33.

    K. Kubo, N. Ohata, A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21–32 (1972)

  34. 34.

    H. Baaziz, A. Tozri, E. Dhahri, E. Hlil, Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram. Int. 41(2), 2955–2962 (2015)

  35. 35.

    J. Curiale, M. Granada, H. Troiani, R. Sánchez, A. Leyva, P. Levy, K. Samwer, Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl. Phys. Lett. 95(4), 043106 (2009)

  36. 36.

    S. Trukhanov, L. Lobanovski, M. Bushinsky, V. Khomchenko, N. Pushkarev, I. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Influence of oxygen vacancies on the magnetic and electrical properties of La1−x SrxMnO{3−x/2} manganites. Eur. Phys. J. B 42(1), 51–61 (2004)

  37. 37.

    H.A. Reshi, S. Pillai, R.S. Yadav, T.A. Para, U. Deshpande, T. Shripathi, V. Shelke, Kondo-like electronic transport and ferromagnetic cluster-glass behavior in La0.7Sr0.3MnO3 nanostructures. RSC Adv. 5(104), 85950–85956 (2015)

  38. 38.

    S. Trukhanov, I.O. Troyanchuk, A. Trukhanov, I. Fita, A. Vasil’ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. J. Exp. Theor. Phys. Lett. 83(1), 33–36 (2006)

  39. 39.

    K. Das, B. Satpati, I. Das, The effect of artificial grain boundaries on magneto-transport properties of charge ordered-ferromagnetic nanocomposites. RSC Adv. 5(35), 27338–27346 (2015)

  40. 40.

    J. Zhang, Y. Xu, S. Cao, G. Cao, Y. Zhang, C. Jing, Kondo-like transport and its correlation with the spin-glass phase in perovskite manganites. Phys. Rev. B 72(5), 054410 (2005)

  41. 41.

    H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Spin- polarised intergrain tunnelling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996)

  42. 42.

    H. Mo, H. Nan, X. Lang, S. Liu, L. Qiao, X. Hu, H. Tian, Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram. Int. 44(8), 9733–9741 (2018)

  43. 43.

    G.R. Li, Z.L. Wang, F.L. Zheng, Y.N. Ou, Y.X. Tong, ZnO@ MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. A 21(12), 4217–4221 (2011)

  44. 44.

    X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ ZnO core–shell nanocomposites for supercapacitor applications. Sci. Rep. 7, 40167 (2017)

  45. 45.

    J. Lü, Y. Zhang, Z. Lü, X. Huang, Z. Wang, X. Zhu, B. Wei, A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite. RSC Adv. 5(8), 5858–5862 (2015)

Download references


The authors want to thank UGC-DAE, CSR for providing the experimental facility. Kumar Navin is thankful to the MHRD, Government of India and Director, MANIT, for institute fellowship and providing infrastructure to carry out this research work.

Author information

Correspondence to Rajnish Kurchania.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navin, K., Kurchania, R. A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes. Appl. Phys. A 126, 100 (2020). https://doi.org/10.1007/s00339-019-3269-2

Download citation


  • LSMO nanoparticles
  • Sol–gel
  • Magnetoresistance
  • Supercapacitance