Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3

  • 43 Accesses


The glassy systems acquired much concern for using in diverse implementations. For this cause, different concentrations of samarium oxide co-doped lithium magnesium borate erbium oxide were prepared by the melt-quench technique. Several physical and optical properties of all prepared glass samples were computed. XRD patterns for all prepared samples show the presence of a broad peak and the lack of sharp peaks emphasize the amorphous nature of all prepared glass samples. FTIR confirms the presence of the functional group BO3 and BO4. Ten considerable absorption bands are evident in the UV–Vis–NIR spectra of the S0 glass sample which are attributed to the presence of Er3+ ions. S1–S4 samples revealed additional six peaks that are attributed to Sm3+ ions. In addition, photon and neutron shielding features were evaluated for all prepared samples which enhanced by the increment of Sm3+ contents. In conclusion, the studied glass composition can be useful in several applications such as solid-state laser, telecommunication, and radiation shielding.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    S. Hashim, M.H.A. Mhareb, S.K. Ghoshal, Y.S.M. Alajerami, D.A. Bradley, M.I. Saripan, N. Tamchek, K. Alzimami, Luminescence characteristics of Li2O–MgO–B2O3 doped with Dy3+ as a solid TL detector. Radiat. Phys. Chem. 116, 138–141 (2015)

  2. 2.

    Y.S.M. Alajerami, S. Hashim, S.K. Ghoshal, D.A. Bradley, M. Mhareb, M.A. Saleh, Copper doped borate dosimeters revisited. J. Lumin. 155, 141–148 (2014)

  3. 3.

    M.I. Sayyed, M.H.A. Mhareb, Z.Y. Abbas, N. Almousa, F. Laariedh, K.M. Kaky, S.O. Baki, Structural, optical, and shielding investigations of TeO2–GeO2–ZnO–Li2O–Bi2O3 glass system for radiation protection applications. Appl. Phys. A 125, 417 (2019)

  4. 4.

    A.E. Ersundu, M. Büyükyıldız, M.Ç. Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energ. 104, 280–287 (2018)

  5. 5.

    M. Ferrari, E. Duval, A. Boyrivent, A. Boukenter, J.L. Adam, Decomposition and first stages of the crystallization in fluorozirconate glasses: study by the 1D23H4 emission of the Pr3+ ions. J. Non-Cryst. Solids 99, 210–221 (1988)

  6. 6.

    S. Hashim, R.S. Omar, S.K. Ghoshal, Realization of dysprosium doped lithium magnesium borate glass based TLD subjected to 1–100 Gy photon beam irradiations. Radiat. Phys. Chem. 163, 1–10 (2019)

  7. 7.

    A. Ichoja, S. Hashim, S.K. Ghoshal, I.H. Hashim, R.S. Omar, Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J. Rare Earth 36, 1264–1271 (2018)

  8. 8.

    Y.S.M. Alajerami, K.M. Abushab, S.I. Alagha, M.H.A. Mhareb, A. Saidu, F.S. Kodeh, Kh Ramadan, Physical and optical properties of sodium borate glasses doped with Dy3+ ions. Int. J. Mod. Phys. B 31, 23 (2017)

  9. 9.

    H.M. Gomaa, M.I. Sayyed, H.O. Tekin, G. Lakshminarayana, A.H. El-Dosokey, Correlate the structural changes to gamma radiation shielding performance evaluation for some calcium bismuth-borate glasses containing Nb2O5. Phys B 567, 109–112 (2018)

  10. 10.

    V.L. Usharani, B. Eraiah, Structural and optical properties of samarium doped lithium lead borate glasses. Mater. Res. Express 6, 055204 (2019)

  11. 11.

    M.H.A. Mhareb, M.A. Almessiere, M.I. Sayyed, Y.S.M. Alajerami, Physical, structural, optical and photons attenuation attributes of lithium-magnesium-borate glasses: role of Tm2O3 doping. Optik 182, 821–831 (2019)

  12. 12.

    E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 116, 108496 (2019). (In press)

  13. 13.

    K. Binnemans, C. Görller-Walrand, J.-L. Adam, Spectroscopic properties of Gd3+-doped fluorozirconate glass. Chem. Phys. Let. 280, 333–338 (1997)

  14. 14.

    Y.S.M. Alajerami, S. Hashim, W.H.W.M. Saridan, A.T. Ramli, The effect of Cuo and Mgo impurities on the optical properties of lithium potassium borate glass. Phys B 407, 2390–2397 (2012)

  15. 15.

    C.-H. Bae, K.-S. Lim, Enhanced blue emission in Er3+/Yb3+ doped glass-ceramics containing Ag nanoparticles and ZnO nanocrystals. Curr. Opt. Photo. 3, 135–142 (2019)

  16. 16.

    M.-Y. Yoo, J.-H. Lee, H.-M. Jeong, K.-S. Lim, P. Babu, Enhancement of photoluminescence and upconversion in Er–Yb codoped nanocrystalline glass–ceramics. Opt. Mater. 35, 1922–1926 (2013)

  17. 17.

    N.F. Mott, E.A. Davis, Phonons and polarons in electronics processing in non-crystalline materials (Clarendon Press, Oxford, 1971)

  18. 18.

    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. Int. J. Appl. Phys. 79, 1736 (1996)

  19. 19.

    C. Rajyasree, D.K. Rao, Spectroscopic properties of RBiBO4 (R= Ca, Sr) glasses doped with TiO2. J. Mol. Struct. 1007, 168–174 (2012)

  20. 20.

    T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi, N. Veeraiah, Structural investigations on PbO–Sb2O3–B2O3: CoO glass ceramics by means of spectroscopic and dielectric studies. J. Phys. Condens. Matter 24, 21245104 (2009)

  21. 21.

    G.V. Rao, P.Y. Reddy, N. Veeraiah, Thermoluminescence studies on Li2O–CaF2–B2O3 glasses doped with manganese ions. Mater. Lett. 57, 403–408 (2002)

  22. 22.

    G. Ramadevudu, S.L.S. Rao, M. Shareeffuddin, M.N. Chary, M.L. Rao, FTIR and optical absorption studies of new magnesium lead borate glasses, Global. J. Sci. Front Res. Phys. Space Sci. 12, 41–46 (2012)

  23. 23.

    M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.A. Saleh, R.S. Dawaud, N.A.B. Razak, S.A.B. Azizan, Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass. Opt. Mater. 37, 391–397 (2014)

  24. 24.

    M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.A. Saleh, M.M.A. Maqableh, N. Tamchek, Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik 126, 3638–3643 (2015)

  25. 25.

    S.A. Reduan, S. Hashim, Z. Ibrahim, Y.S.M. Alajerami, M.H.A. Mhareb, M. Maqableh, R.S.E.S. Dawaud, N. Tamchek, Physical and optical properties of Li2O–MgO–B2O3 doped with Sm3+. J. Mol. Struct. 1060, 6–10 (2014)

  26. 26.

    R.S. Gedam, D.D. Ramteke, Electrical and optical properties of lithium borate glasses doped with Nd2O3. J. Rare Earth 30, 785 (2012)

  27. 27.

    F. Nawaz, M.R. Sahar, S.K. Ghoshal, Spectral investigation of Sm3+/Yb3+ co-doped sodium tellurite glass. Chin. Opt. Lett. 11, 61605 (2013)

  28. 28.

    B.C. Jamalaiah, T. Suhasini, L.R. Moorthy, K.J. Reddy, I.-G. Kim, D.-S. Yoo, K. Jang, Visible and near infrared luminescence properties of Er3+-doped LBTAF glasses for optical amplifiers. Opt. Mater. 34, 861–867 (2012)

  29. 29.

    M.R. Dousti, M.R. Sahar, S.K. Ghoshal, R.J. Amjad, R. Arifin, Up-conversionenhancement in Er3+–Ag co-doped zinc tellurite glass: effect of heat treatment. J. Non-Cryst. Solids 358, 2939–2942 (2012)

  30. 30.

    W.A. Pisarski, T. Goryczka, J. Pisarska, W. Ryba-Romanowski, "Er-doped lead borate glasses and transparent glass ceramics for near-infrared luminescence and up-conversion applications. J. Phys. Chem. B 111, 2427–2430 (2007)

  31. 31.

    E. Şakar, M. Büyükyıldız, B. Alım, B.C. Şakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 159, 64–69 (2019)

  32. 32.

    M.I. Sayyed, K.M. Kaky, E. Şakar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses. J. Non-Cryst. Solids 512, 33–40 (2019)

  33. 33.

    A.H. Abdalsalam, M.I. Sayyed, T.A. Hussein, E. Şakar, M.H.A. Mhareb, B.C. Şakar, B. Alim, K.M. Kaky, A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 523, 92–98 (2019)

  34. 34.

    R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma Ray, Shielding study of bariume bismuthe borosilicate glasses as transparent shielding materials using MCNP-4C Code, XCOM program, and available experimental data. Nucl. Eng. Tech. 49, 216–223 (2017)

  35. 35.

    M.I. Sayyed, H.O. Tekin, O. Kılıcoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results Phys. 11, 40–45 (2018)

  36. 36.

    E. Yılmaz, H. Baltas, E. Kırıs, I. Ustabas, U. Cevik, A.M. El-Khayatt, Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy 38, 2204–2212 (2011)

  37. 37.

    A.E.-S. Abdo, Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Ann. Nucl. Energy 29, 1977–1988 (2002)

  38. 38.

    I. Akkurt, A.M. El-Khayatt, The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 51, 5–9 (2013)

Download references


Authors are grateful to the Basic and Applied Scientific Research Center of Imam Abdulrahman Bin Faisal University for the technical support.

Author information

Correspondence to M. H. A. Mhareb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mhareb, M.H.A. Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 126, 71 (2020). https://doi.org/10.1007/s00339-019-3262-9

Download citation


  • Samarium oxide
  • Borate glass
  • Mass attenuation coefficient
  • Effective removal cross-section