Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Opto-structural properties of Si-rich SiNx with different stoichiometry

  • 56 Accesses

Abstract

This study deals with the fabrication and characterization of silicon nanoparticles in a SiNx dielectric matrix to have thin films of different gap energies, films essentially based on silicon. Hydrogenated silicon-rich nitride films SiNx:H with different stoichiometry X = N/Si were grown on Si substrate using industrial low-frequency plasma-enhanced chemical vapor deposition (LF-PECVD). Optical, electrical, and structural properties of the obtained films have been studied after rapid thermal annealing at 950 °C. The GIXRD and Raman analysis demonstrate that the films contain simultaneously the hexagonal β-Si3N4 phase and crystalline silicon nanoparticles and the average size of silicon nanocrystallites is within the range of 2.5–11 nm according to the stoichiometry. A strong visible photoluminescence (PL) can be observed in silicon nitride and the evolution of PL with the NH3/SiH4 ratio is correlated with the evolution of the structure. The layers having a luminescence in the visible region present a photocurrent (PC) in the high-energy region. PC spectroscopy has clearly demonstrated the existence of increased absorption on the high-energy side associated with Si-Ncs and confirms the potential of Si-Ncs for photovoltaic applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002)

  2. 2.

    K. Yano, T. Ishii, T. Hashimoto et al., Room-temperature single-electron memory. IEEE T-ED 41, 1628–1638 (1994)

  3. 3.

    W. Liao, X. Zeng, W. Yao, X. Wen, Photoluminescence and carrier transport mechanisms of silicon-rich silicon nitride light emitting device. Appl. Surf. Sci. 351, 1053–1059 (2015)

  4. 4.

    P.L. Li, C. Gau, C.W. Liu, Correlation between photo response and nanostructures of silicon quantum dots in annealed Si-rich nitride films. Thin. Solid Films 529, 185–189 (2013)

  5. 5.

    S. Hong, I.B. Baek, G.Y. Kwak, S.H. Lee, J.S. Jang, K.J. Kim, A. Kim, Improved electrical properties of silicon quantum dot layers for photovoltaic applications. Sol. Energy. Mater. Sol. Cells. 150, 71–75 (2016)

  6. 6.

    D. Das, D. Kar, Structural studies of n-type nc-Si–QD thin films for nc-Si solar cells. J. Phys. Chem. Solids. 111, 115–122 (2017)

  7. 7.

    G.R. Lin, Y.H. Pai, C.T. Lin, C.C. Chen, Comparison on the electroluminescence of Si-rich SiNx and SiOx based light emitting Diodes. Appl. Phys. Lett. 96, 263514 (2010)

  8. 8.

    C.D. Lin, C.H. Cheng, Y.H. Lin, C.L. Wu, Y.H. Pai, G.R. Lin, Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films. Appl. Phys. Lett. 99, 243501 (2011)

  9. 9.

    D. Li, J. Huang, D. Yang, Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment. Phys. E 41, 920–922 (2009)

  10. 10.

    G.R. Lin, S.P. Su, C.L. Wu, Y.H. Lin, B.J. Huang, H.Y. Wang, C.T. Tsai, C.I. Wu, Y.C. Chi, Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Sci. Rep. UK 5, 9611 (2015)

  11. 11.

    S. Mohammed, M.T. Nimmo, A.V. Malko, C.L. Hinkle, Chemical bonding and defect states of LPCVD grown silicon-rich Si3N4 for quantum dot applications. J. Vac. Sci. Technol. A 32(2), 021507 (2014)

  12. 12.

    I. Parkhomenkoa, L. Vlasukovaa, F. Komarovb, O. Milchaninb, M. Makhavikoub, A. Mudryic, V. Zhivulkoc, J. Żukd, P. Kopycińskid, D. Murzalinove, Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films. Thin. Solid Films 626, 70–75 (2017)

  13. 13.

    X. Di Dawei, P.W.Ivan Heli, A.G. Martin, C. Gavin, Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics. Nanoscale Res. Lett. 6, 612–618 (2011)

  14. 14.

    G. Conibeer, M. Green, E.-C. Cho, D. König, Y.H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink et al., Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin. Solid Films 516, 6748–6756 (2008)

  15. 15.

    P.J. Wu, Y.C. Wang, I.C. Chen, Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters. Nanoscale Res. Lett. 8(1), 457 (2013)

  16. 16.

    C. Jiang, M.A. Green, Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006)

  17. 17.

    R Chaoui, B Mahmoudi, A Messaoud, Y SiAhmed, A Mefoued, B Mahmoudi, Silicon solar cell emitter profile tailoring using the DOSS diffusion technique. 1st Africa Photovoltaic Solar Energy Conference and exhibition. Durban, South Africa, 27–29 March (2014)

  18. 18.

    T.V. Torchynska, L.G. Vega-Macotela, L. Khomenkova, A. Slaoui, Light-emitting mechanism varying in Si-rich-SiNx controlled by film’s composition. Adv. Nano. Res. 5(3), 261–279 (2017)

  19. 19.

    E.D. Palik, Handbook of Optical Constants of Solids Academic (Elsevier, New York, 1985), pp. 578–774

  20. 20.

    A.S. Keita, A.E. Naciri, F. Delachat, M. Carrada, G. Ferblantier, A. Slaoui, Spectroscopic ellipsometry investigation of the optical properties of nanostructured Si/SiNx films. J. Appl. Phys. 107, 093516 (2010)

  21. 21.

    B. Benyahia, F. Tiour, L. Guerbous, R. Chaoui, I. Menous, B. Mahmoudi, A. Mefoued, A. Guenda, Evolution of optical and structural properties of silicon nanocrystals embedded in silicon nitride films with annealing temperature. J. Nano Res. 49, 163–173 (2017)

  22. 22.

    N. Budini, P.A. Rinaldi, J.A. Schmidt, R.D. Arce, R.H. Buitrago, Influence of microstructure and hydrogen concentration on amorphous silicon crystallization. Thin Solid Films 518, 5349–5354 (2010)

  23. 23.

    L.V. Mercalo, E.M. Esposito, P.D. Veneri, G. Fameli, First and second-order Raman scattering in Si nanostructures within silicon nitride. Appl. Phys. Lett. 97, 153112 (2010)

  24. 24.

    A. Kshiragar, P. Nyaupane, D. Bodas, S.P. Duttagupta, S.A. Gangal, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl. Surf. Sci. 257, 5052–5058 (2011)

  25. 25.

    F. Komarov, L. Vlasukova, I. Parkhomenko, O. Milchanina, A. Mudryi, A. Togambaeva, O. Korolik, Raman study of light-emitting SiNx films grown on Si by low-pressure chemical vapor deposition. Thin Solid Films 579, 110–115 (2015)

  26. 26.

    O. Debieu, R.P. Nalini, J. Cardin, X. Portier, J. Perrière, F. Gourbilleau, Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Res. Lett. 8, 31–36 (2013)

  27. 27.

    D.H. Ma, W.J. Zhang, R.Y. Luo, Z.Y. Jiang, Q. Ma, X.B. Ma, Z.Q. Fan, D.Y. Song, L. Zhang, Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films. Superlattice. Microst. 93, 269–279 (2016)

  28. 28.

    S.K. Gupta, P.K. Jha, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals. Solid. State. Commun. 49, 1989–1992 (2009)

  29. 29.

    N. Wada, S. Solin, J. Wong, S. Prochazka, Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J. Non-Cryst. Solids. 43, 7–15 (1981)

  30. 30.

    G Scardera, Correlating structural and optical properties of silicon nanocrystals embedded in silicon nitride: an experimental study of quantum confinement for photovoltaic applications. PhD thesis. UNSW Sydney (Australia) (2008)

  31. 31.

    G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures. J. Cryst. Growth 310, 3680 (2008)

  32. 32.

    G. Scardera, E. Bellet-Amalric, D. Bellet, T. Puzzer, E. Pink, G. Conibeer, Formation of a Si-Si3N4 nanocomposite from plasma enhanced chemical vapour deposition multilayer structures. J. Cryst. Growth. 310, 3685 (2008)

  33. 33.

    T.V. Torchynska, J.L. CasasEspinola, L. Khomenkova, E. Vergara Hernandez, J.A. AndracaAdame, A. Slaoui, Structural and light emitting properties of silicon-rich silicon nitride films grown by plasma enhanced-chemical vapor deposition. Mat. Sci. Semicon. Proc. 37, 46–50 (2015)

  34. 34.

    A. Kshirsagar, P. Nyaupane, D. Bodas, S.P. Duttagupta, S.A. Gangal, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD. Appl. Surf. Sci. 257, 5052–5058 (2011)

  35. 35.

    S. Ebraheem, A. El Saied, Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. Mat. Sci. Appl. 4, 324–329 (2013)

  36. 36.

    B. Karvaly, I. Hevesi, Investigations on diffuse reflectance spectra of V205 PowderZ. Naturforsch 26a, 245–249 (1971)

  37. 37.

    P. Singh, M.K. Harbola, D.D. Johnson, Better band gaps for wide-gap semiconductors from a locally corrected exchange-correlation potential that nearly eliminates self-interaction errors. J. Phys. Condens. Matter. 29(42), 424001 (2017)

  38. 38.

    O. Blázquez, J. López-Vidrier, S. Hernández, J. Montserrat, B. Garrido, Electro-optical properties of non-stoichiometric silicon nitride films for photovoltaic applications. Energy Procedia. 44, 145–150 (2014)

  39. 39.

    V.A. Gritsenko, Electronic structure of silicon nitride. Phys. Uspekhi. 55(5), 498–507 (2012)

  40. 40.

    R. Hazem, M. Izerrouken, A. Sari, S. Kermadi, M. Msimanga, A. Benyagoub, M. Maaza, M. Belgaid, M. Boumaour, Radiation damage induced by swift heavy ions in TiO2 sol–gel films nanocrystallines. Nucl. Instrum. Methods Phys. Res. B 304, 16–22 (2013)

  41. 41.

    T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sunga, Y.W. Ok, T.Y. Seong, C.J. Choi, Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 85, 5355–5359 (2004)

  42. 42.

    M.L. Mastronard, F.M. Flaig, D. Faulkner, E.J. Henderson, C. Kübel, U. Lemmer, G.A. Ozin, Size dependent absolute quantum yields for size–—separated collodially-stable silicon nanocrystals. Nano. Lett. 12, 337–342 (2012)

  43. 43.

    P.R.J. Wilson, T. Roschuk, K. Dunn, E.N. Normand, E. Chelomentsev, O.H.Y. Zalloum, J. Wojcik, P. Mascher, Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters. Nanoscale Res. Lett. 6, 168 (2011)

  44. 44.

    R. Amrani, F. Pichot, L. Chahed, Y. Cuminal, Amorphous-nanocrystalline transition in silicon thin films obtained by argon diluted silane PECVD. Cryst. Struct. Theor. Appl. 1, 57–61 (2012)

  45. 45.

    B.H. Yu, D. Chen, First-principles study on the electronic structure and phase transition of α, β and γ-Si3N4. Acta. Phys. Sin. 61, 197102 (2012)

  46. 46.

    L. Cui, M. Hu, Q. Wang, Y. Yang, Prediction of novel hard phases of Si3N4: first-principles calculations. J. Solid. State. Chem. 228, 20–26 (2015)

  47. 47.

    B.H. Kim, C.H. Cho, T.W. Kim, N.M. Park, G.Y. Sung, S.J. Park, Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4. Appl. Phys. Lett. 86, 091908 (2005)

  48. 48.

    T. Torchynska, L. Khomenkova, A. Slaoui, Modification of Light emission in si-rich silicon nitride films versus stoichiometry and excitation light energy. J. Electron. Mat. 47(7), 3927–3933 (2018)

  49. 49.

    C. Delerue, G. Allan, M. Lannoo, Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B. 48, 11024–11036 (1993)

  50. 50.

    C.L. Wu, G.R. Lin, Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. Aip. Adv. 2, 042162 (2012)

  51. 51.

    J. De la Torre, A. Souifi, A. Poncet, G. Bremond, G. Guillot, B. Garrido, J.R. Morante, Ground and first excited states observed in silicon nanocrystals by photocurrent technique. Solid. State Electron. 49(7), 1112–1117 (2005)

  52. 52.

    R. Zhang, X.Y. Chen, K. Zhang, W.Z. Shen, Photocurrent response of hydrogenated nanocrystalline silicon thin films. J. Appl. Phys. 100(10), 104310 (2006)

Download references

Acknowledgements

This work was supported by the “Fond National de la Recherche”, DGRSDT/MESRS, Algeria, Ministry of Higher Education and Scientific Research.

Author information

Correspondence to F. Tiour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiour, F., Benyahia, B., Brihi, N. et al. Opto-structural properties of Si-rich SiNx with different stoichiometry. Appl. Phys. A 126, 59 (2020). https://doi.org/10.1007/s00339-019-3258-5

Download citation

Keywords

  • SiNx:H
  • Plasma-enhanced chemical vapor deposition (PECVD)
  • Si nanocrystals (Si-Ncs)
  • X-ray diffraction
  • Photoluminescence