Advertisement

Applied Physics A

, 126:87 | Cite as

Influence of pH on nano-phosphor YPO4:2%Sm3+ and luminescent properties

  • Jinxiu WuEmail author
  • Hengjun Jia
  • Mei Li
  • Huiling Jia
  • Zhaogang Liu
Article
  • 20 Downloads

Abstract

Nano-phosphors YPO4:2%Sm3+ with different pH values were synthesized with hydrothermal method. The influence of pH on structure, morphology and fluorescence property of nano-phosphor was researched. The product composition, structure, morphology and luminescent properties were characterized and analyzed with X-ray diffractometry (XRD), scanning electron microscopy (SEM and EDS), infrared spectrometer (FT-IR), ultravoilet spectrometer (UV), fluorescence spectrophotometer (FL) and other instruments. The research results indicated that: the tetragonal crystal system structure of pure phase can be obtained at pH 1–5, and the mix phases of tetragonal and hexagon can be obtained at pH 7–9. The product morphology is fusiform at pH 1; spherical at pH 3–5; and bar-shaped at pH 7–9. As pH is gradually increased from 1 to 9, the fluorescence intensity of nano-phosphor is gradually decreased and then increased. The nano-phosphor with pH 1 has the maximum fluorescence intensity and fluorescence lifetime; moreover, it has better fluorescence thermal stability, and its activation energy is 0.233 eV.

Keywords

YPO4:2%Sm3+ Nano-phosphor pH Values Fluorescence 

Notes

Acknowledgements

This work was supported by a Grant from fund of Nature Science of China (Grant Nos. 51965053, 51634005 and 51564040), and fund of Nature Science of Inner Mongolia autonomous region, China (No. 2017MS (LH)0208, 2018MS02016).

References

  1. 1.
    A.A. Ansari, J. Photochem. Photobio. A: Chem. 343, 126 (2017)CrossRefGoogle Scholar
  2. 2.
    A.A. Ansari, Colloids and Surfaces A: Physicochem. Eng. Aspects. 529, 286 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Rodriguez-Liviano, A.I. Becerro, D. Alcantara, V. Grazu, M. Jesus, M. Ocana, Inorg. Chem 52(2), 647 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Zheng, P. Huang, D. Tu, E. Ma, H.M. Zhu, X.Y. Chen, Chem. Soc. Rev. 44(6), 1379 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Meenambal, P. Poojar, S. Geethanath, T.S. Anitha, S. Kannan, J. Biomed. Mater. Res. Part. B 107(5), 1372 (2019)CrossRefGoogle Scholar
  6. 6.
    Y.I. Park, K.T. Lee, Y.D. Suh, T.W. Hyeon, Chem. Soc. Rev 44(6), 1302 (2015)CrossRefGoogle Scholar
  7. 7.
    J.Q. Hu, Y. Bando, D. Golberg, Chem. Phys. Lett. 372, 758 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    H. Guan, C. Lv, C. Han, D.C. Zhu, Mater. Lett. 81, 92 (2012)CrossRefGoogle Scholar
  9. 9.
    J.J. Xiao, Y.Y. Gao, J. Zhang, Y.X. Liu, Q.B. Yang, J. Rare. Earth. 30(6), 515 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Du, X. Kan, Y. Han, Z.Y. Sun, W.W. Guo, Mater. Lett. 74, 229 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, J. Hong, F. Yue, Y.X. Sun, Y.Z. Wang, J. Rare. Earth. 31(5), 449 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Lai, Y. Du, M. Zhao, K. Sun, L. Yang, Ceram. Int. 40(1), 1885 (2014)CrossRefGoogle Scholar
  13. 13.
    E. Pavitra, G.S.R. Raju, J.S. Yu, Mater. Lett. 156, 173 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Kahouadji, L. Guerbous, A. Boukerika, D. Slobodan, J. Dragana, D. Miroslav, Opt. Mater. 70, 138 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    J. Cybińska, Opt. Mater. 65, 88 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    P. Halappa, A. Mathur, M.H. Delville, C. Shivakumara, J. Alloys Compds. 740, 1086 (2018)CrossRefGoogle Scholar
  17. 17.
    Z. Yahiaoui, M.A. Hassairi, M. Dammak, E. Cavalli, J. Alloys Compds. 763, 56 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Yang, H. Xiong, J. Dong, C.M. Yang, S.C. Gan, L.C. Zou, J. Phys. Chem. Solids 111, 355 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    W.A.N. Ying, T. Abudouwufu, T. Yusufu, J.Y. He, A. Sidike, J. Rare. Earth. 35(9), 850 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Liu, J. Chen, B. Fu, J.Y. Yang, Chin. Nonferrous Metals Eng. 8(2), 54 (2018)Google Scholar
  21. 21.
    Y.L. Yan, J. Wang, L.L. Wang, Z.X. Lu, B. Ren, Y.H. Xu, Chin. J. Mater. Res. 29(4), 307 (2015)Google Scholar
  22. 22.
    J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B.Y. Huang, X. He, Opt. Mater. 32(9), 857 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    X.D. Zheng, Z.J. Zhang, L. Zhang, X. Wang, Chin. Shandong Chem. Ind. 44(12), 7 (2015)Google Scholar
  24. 24.
    J. Ma, X. Li, Chin. Funct. Mater 8, 345 (2010)Google Scholar
  25. 25.
    Y. Tang, R. Mei, S. Yang, H.X. Tang, W.Z. Yin, Y.C. Xu, Y.P. Gao, Superlattice. Microst. 92, 256 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Zhang, S.H.I. Jing, X. Wu, S.D. Liu, X. Wang, J. Rare. Earth. 34(11), 1103 (2016)CrossRefGoogle Scholar
  27. 27.
    J.X. Wu, M. Li, Z.G. Liu, M.T. Wang, H.L. Jia, Chin. J. Lumin. 10, 1395 (2018)Google Scholar
  28. 28.
    J. Wu, M. Li, M. Wang, Z. Liu, H. Jia, J. Lumin. 197, 219 (2018)CrossRefGoogle Scholar
  29. 29.
    J. Wu, M. Li, H. Jia, Z. Liu, M. Wang, Appl Phys A 125, 438 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    B. Kahouadji, L. Guerbous, D.J. Jovanović, D. Miroslav, M. Dramicanin, L. Samah, L. Lamirl, M.C. Milean, Opt. Mater. 91, 35 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    Z. Liang, Z. Mu, Q. Wang, D. Zhu, F. Wu, Appl. Phys. A 123, 612 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Q. Wang, Y. Li, J. Guo, B.C. Liu, A. Dong, G.G. Xu, J. Mater, Sci. 49(13), 4499 (2014)Google Scholar
  33. 33.
    S.Q. Zheng, J. Wang, Y.L. Yan, H.P. Zhang, Chin. J. Rare Earth. 33(3), 316 (2015)Google Scholar
  34. 34.
    H. Xiong, Y. Zhang, Y. Liu, T. Gao, L.L. Zhang, Z. Qian, L. Zhang, S.C. Gan, Q.S. Huo, J. Alloys Compd. 782, 845 (2019)CrossRefGoogle Scholar
  35. 35.
    J. Papan, D. Jovanović, M. Sekulić, E. Glais, M.D. Dramicanin, Powder. Technol. 346, 150 (2019)CrossRefGoogle Scholar
  36. 36.
    H. Li, X. Gong, Y. Chen, J.H. Huang, Y.F. Lin, Z.D. Luo, Y.D. Huang, J. Rare. Earth. 36(5), 456 (2018)CrossRefGoogle Scholar
  37. 37.
    J. Sun, Y. Sun, H. Du, J. Phy. Chem. Sol. 74(7), 1007 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J. Cybińska, M. Woźniak, A.V. Mudring, E. Zych, J. Lumin. 169, 868 (2016)CrossRefGoogle Scholar
  39. 39.
    H. Guo, B. Devakumar, B. Li, X.Y. Huang, Dyes. Pigments. 151, 81 (2018)CrossRefGoogle Scholar
  40. 40.
    J. Chen, W. Zhao, J. Wang, N.H. Wang, Y.J. Meng, J. He, X. Zhang, Ceram. Int. 41(9), 11945 (2015)CrossRefGoogle Scholar
  41. 41.
    G. Li, Y. Wei, W. Long, G. Xu, Mater. Res. Bull. 95, 86 (2017)CrossRefGoogle Scholar
  42. 42.
    Q. Yang, G. Li, Y. Wei, H.Y. Chai, J. Lumin. 199, 323 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Jinxiu Wu
    • 1
    • 2
    • 3
    • 5
    Email author
  • Hengjun Jia
    • 3
    • 4
    • 5
  • Mei Li
    • 1
    • 2
    • 3
    • 5
  • Huiling Jia
    • 3
    • 4
    • 5
  • Zhaogang Liu
    • 1
    • 3
    • 5
  1. 1.College of Materials and MetallurgyInner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  3. 3.Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources, Ministry of EducationBaotouPeople’s Republic of China
  4. 4.College of Mechanical EngineeringInner Mongolia University of Sciences and TechnologyBaotouPeople’s Republic of China
  5. 5.Inner Mongolia Key Laboratory of Rare Earth Hydrometallurgy and Light Rare Earth ApplicationBaotouPeople’s Republic of China

Personalised recommendations