Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A microwave-absorbing property of super-paramagnetic zinc–nickel ferrite nanoparticles in the frequency range of 8–12 GHz

  • 35 Accesses

Abstract

Microwave-absorbing samples were fabricated using carbon black powder, super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles dispersed in a SiO2 matrix, epoxy resin, and hardener. The paint was then coated onto a steel substrate. The effects of super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles content (0–1.75 wt%) and different coating thickness (1–2.5 mm) on microwave absorption ability in the X-band frequency range (8–12 GHz) have been studied. The results showed that paint sample containing only carbon black (20 wt%) and epoxy resin (80 wt%) expressed low microwave absorption ability at 10 GHz centered frequency (≈ 67% absorption percentage). The super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles strongly affected the microwave-absorbing ability. A sample of 1.5 wt% super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles content exhibited highest microwave absorption at 10 GHz centered frequency (≈ 99% power attenuation). Higher coating thicknesses (1–2.5 mm) led to greater microwave absorption and reached a very high absorption of 2 mm thickness (≈ 99% absorption percentage at 10 GHz centered frequency).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    K.L. Gaylor, Radar Absorbing Materials-Mechanisms and Materials (Mater. Res. Lab, Cordite Avenue, Maribyrnong, Victoria, Australia, 1989)

  2. 2.

    Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, X. He, X. Lin, H. Gao, Y. Chen, J. Phys. Chem. 111, 13696 (2007)

  3. 3.

    L. Liu, Y. Duan, L. Ma, S. Liu, Z. Yu, J. Appl. Surf. Sci. 257, 842 (2010)

  4. 4.

    W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, J. Zhijiang, J. Magn. Magn. Mater. 321, 3442 (2009)

  5. 5.

    V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloys Compd. 489, 297 (2010)

  6. 6.

    T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Magn. Magn. Mater. 246, 360 (2002)

  7. 7.

    C.H. Peng, C.C. Hwang, J. Wan, J.S. Tsai, S.Y. Chen, Mater. Sci. Eng. B 117, 27 (2005)

  8. 8.

    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018). https://doi.org/10.1016/j.jmmm.2018.05.006

  9. 9.

    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. TrukhanovJ, All. Comp. 791, 522 (2019)

  10. 10.

    V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477, 9–16 (2019). https://doi.org/10.1016/j.jmmm.2018.12.101

  11. 11.

    A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanov, M. Zdorovets, J. All. Comp. 788, 1193 (2019)

  12. 12.

    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, An.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, Charanjeet Singh, Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1-x-(BaTiO3)x bicomponent ceramics, Ceram. Int. 44, 21295–21302 (2018). https://doi.org/10.1016/j.ceramint.2018.08.180.

  13. 13.

    M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Comp. Part B. 174, 107054 (2019)

  14. 14.

    J.H Oh, K.S Oh, C.G. Kim, C.S. Hong, J. Comp. Part B 35, 49 (2004)

  15. 15.

    R. Schueler, J. Petermann, K. Schulte, H.P. Wentzel, J Appl Polym Sci 63, 1741 (1997)

  16. 16.

    M.A. Almessiere, Y. Slimani, H. Güngüne, A. Baykal, S.V. Trukhanov, A.V. Trukhanov, Nanomaterials. 9, 24 (2019)

  17. 17.

    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqati, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials. 9, 202 (2019)

  18. 18.

    W.S. Chin, D.G. Lee, J. Comp. Struct. 77, 457 (2007)

  19. 19.

    J.B. Kim, S.K. Lee, C.G. Kim, J. Comp. Sci. Tech. 68, 2909 (2008)

  20. 20.

    O.S. Yakovenko, LYu. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, Magnetic anisotropy of the graphite nanoplatelet-epoxy and MWCNT-epoxy composites with aligned barium ferrite filler. J. Mat. Sci. 52, 5345–5358 (2017). https://doi.org/10.1007/s10853-017-0776-4

  21. 21.

    O.S. Yakovenko, LYu. Matzui, L.L. Vovchenko, O.V. Lozitsky, O.I. Prokopov, O.A. Lazarenko, A.V. Zhuravkov, V.V. Oliynyk, V.L. Launets, S.V. Trukhanov, A.V. Trukhanov, Mol. Cryst. Liq. Crys. 661, 68 (2018)

  22. 22.

    M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, J. Magn. Magn. Mater. 271, 207 (2004)

  23. 23.

    L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, J. Carbon 73, 185 (2014)

  24. 24.

    G.R. Amiri, M.H. Yousefi, M.R. Aboulhassani, M.H. Keshavarz, D. Shahbazi, S. Fatahian, M. Alahi, Diges J. Nanomater. and Biostruc. 5, 719 (2010)

  25. 25.

    A.T.Q. Luong, D.V. Nguyen, Inter. J. Mater. Res. 109, 555 (2018)

  26. 26.

    A.T.Q. Luong, D.V. Nguyen, Mater. Express 9, 344 (2019)

  27. 27.

    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 093909 (2008)

  28. 28.

    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/j.jallcom.2018.04.150

  29. 29.

    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram Int. 44, 13520–13529 (2018). https://doi.org/10.1016/j.ceramint.2018.04.183

  30. 30.

    I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3-γ, J. Phys.: Condens. Matter 12, L155–L158 (2000). https://doi.org/10.1088/0953-8984/12/7/103.

  31. 31.

    S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Barner, J. Mag and Mag. Mater 237, 276 (2001)

  32. 32.

    S.V. Trukhanov, J. Mater. Chem. 13, 347 (2003)

Download references

Acknowledgements

This research is funded by Ho Chi Minh City University of Technology, VNU-HCM, under Grant number BK-SDH-2020-1680937

Author information

Correspondence to Luong Thi Quynh Anh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anh, L.T.Q., Van Dan, N. A microwave-absorbing property of super-paramagnetic zinc–nickel ferrite nanoparticles in the frequency range of 8–12 GHz. Appl. Phys. A 126, 67 (2020). https://doi.org/10.1007/s00339-019-3251-z

Download citation

Keywords

  • Carbon black
  • Epoxy resin
  • Microwave-absorbing nanoparticles
  • Super-paramagnetic zinc-nickel ferrite nanoparticles
  • X-band frequency range