Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity

Abstract

Bio-inspired synthesis of iron oxide nanoparticles (FeONPs) has been carried out by eco-friendly, low cost, and facile method using an aqueous extract of Psidium guajava (PG) leaf as a potential reducing agent. The obtained FeONPs were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and energy-dispersive spectroscopy techniques. The surface plasmon resonance peak of FeONPs was found to be 310 nm. The FTIR spectra analysis indicates the presence of various functional groups in PG extract that are responsible for the biosynthesis of FeONPs. The XRD confirmed that FeONPs were indexed into the cubic spinel lattice structure. The SEM and TEM analysis confirmed the spherical morphology of FeONPs with particle size ranging from 1 to 6 nm. The superparamagnetic nature of the formulated FeONPs was determined using VSM. The FeONPs formulated inhibit the growth of six human pathogenic strains with strong activity chiefly against Escherichia coli and Staphylococcus aureus at low concentration when compared to other standard antibacterial drugs. It is noteworthy that the formulated FeONPs are efficient as an antibacterial agent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    T.K. Indira, P.K. Laksmi, Int. J. Pharm. Sci. Nanotechnol. 3, 1035–1042 (2010)

  2. 2.

    M. Leena, G. Hassan, R. Doaa, Z. Jesse, Particuology 30, 1–14 (2017)

  3. 3.

    S. Nathalie, D. Fabienne, P. Véronique, J. Control Release 198, 35–54 (2015)

  4. 4.

    B.H. Jered, Y. Tae-Jong, L. Hakho, W. Ralph, Adv. Rev. 2, 291–304 (2010)

  5. 5.

    P. Cheera, Y. Gutha, V. Ponneri, J. Magn. Magn. Mater. 424, 376–381 (2016)

  6. 6.

    D.-L. Joanna, Ł. Agnieszka, H. Przemysław, S. Oskar, K. Karolina, K. Anna, Materials 12, 617 (2019)

  7. 7.

    M. Seyed, R. Karolin, I.D. Natascha, S. Saskiavon, K. Ruth, K. Fabian, L. Twan, Adv. Drug Deliv. Rev. 138, 302–325 (2019)

  8. 8.

    P. Cozzoli, R. Comparelli, E. Fanizza, M. Curri, A. Agostiano, D. Laub, J. Am. Chem. Soc. 126, 3868–3879 (2004)

  9. 9.

    S.A. Dharamvir, K. Rekha, Y. Rachna, Y. Indu, Int. J. Nanosci. 13, 1450004 (2014)

  10. 10.

    Y. Socol, O. Abramson, A. Gedanken, Y. Meshorer, L. Berenstein, A. Zaban, Langmuir 18, 4736–4740 (2002)

  11. 11.

    M. Khalil, J. Yu, N. Liu, R.L. Lee, J. Nanoparticle Res. 16, 2362 (2014)

  12. 12.

    F.N. Sayed, V. Polshettiwar, Sci. Rep. 5, 9733 (2015)

  13. 13.

    J. Chen, K. Wang, J. Xin, Y. Jin, Mater. Chem. Phys. 108, 421–424 (2008)

  14. 14.

    A. Umera, B.T. Muhammad, T. ArslanLiaqat, A. Muhammad, J. Alloys Compd. 732, 935–944 (2018)

  15. 15.

    R. Mamatha, S. Khan, P. Salunkhe, S. Satpute, S. Kendurkar, A. Prabhune, Mater. Lett. 205, 226–229 (2017)

  16. 16.

    S.O. Aisida, N. Madubuonu, M.H. Alnasir, I. Ahmad, S. Botha, M. Maaza, F.I. Ezema, Appl. Nanosci. (2019). https://doi.org/10.1007/s13204-019-01099-x

  17. 17.

    S.O. Aisida, K. Ugwu, P.A. Akpa, A.C. Nwanya, P.M. Ejikeme, S.S. Botha, F.I. Ezema, Mater. Chem. Phys. 237, 121859 (2019)

  18. 18.

    S.O. Aisida, K. Ugwu, P.A. Akpa, A.C. Nwanya, U. Nwankwo, S.S. Botha, F.I. Ezema, Surf. Interfaces 17, 100359 (2019)

  19. 19.

    P. Hadeeja, B. Viktoria, L. Lalita, in AIP Conference Proceedings, vol 1724 (2016), p. 020048

  20. 20.

    G. Jagathesan, P. Rajiv, Biocatal. Agric. Biotechnol. 13, 90–94 (2018)

  21. 21.

    M.N. Madhukara, H.N. Bhojya, G. Nagarajub, M. Vinuthc, H.N. Raja, Microchem. J. 146, 1227–1235 (2019)

  22. 22.

    S.O. Aisida, E. Ugwoke, A. Uwais, C. Iroegbu, S. Botha, I. Ahmad, M. Maaza, F.I. Ezema, J. Polym. Res. 26, 225 (2019)

  23. 23.

    N. Madubuonu, S.O. Aisida, A. Ali, I. Ahmad, Z. Ting-kai, S. Botha, M. Maaza, F.I. Ezema, J. Photochem. Photobiol. B 199, 111601 (2019)

  24. 24.

    S.O. Aisida, P.A. Akpa, I. Ahmad, T. Zhao, M. Maaza, F.I. Ezema, Eur. Polym. J. (2019). https://doi.org/10.1016/j.eurpolymj.2019.109371

  25. 25.

    S.O. Aisida, P.A. Akpa, I. Ahmad, M. Maaza, F.I. Ezema, Physica B Cond. Matter 571, 130–136 (2019)

  26. 26.

    D.O. Okoro, J. Ozuomba, S. Aisida, P. Asogwa, Surf. Interface 16, 127–131 (2019)

  27. 27.

    D.O. Okoroh, J.O. Ozuomba, S.O. Aisida, P.U. Asogwa, Adv. Nanoparticles 8, 36–45 (2019)

  28. 28.

    E. Ugwoke, S.O. Aisida, A.A. Mirbahar, M. Arshad, I. Ahmad, T. Zhao, F.I. Ezema, Surf. Interfaces 18, 100419 (2020)

  29. 29.

    G. Elango, S. Kumaran, S. Kumar, S. Muthuraja, S. Roopan, Acta Part A Mol. Biomol. Spectrosc. 145, 176–180 (2015)

  30. 30.

    K. Mandeep, M. Akansha, M. Amit, S. Jagpreet, R. Mohit, B. Soumen, Mater. Lett. 215, 121–124 (2018)

  31. 31.

    X.-J. Qin, Q. Yu, H. Yan, A. Khan, M.-Y. Feng, P.-P. Li, X.J. Hao, L.K. An, H. Liu, J. Agric. Food Chem. 65, 4993–4999 (2017)

  32. 32.

    P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolke, Manual of Clinical Microbiology, vol. 6 (ASM, Washington, DC, 1995)

  33. 33.

    P. Karpagavinayagam, C. Vedh, Vaccum 160, 286–292 (2019)

  34. 34.

    G. Manjul, J.N. Geeta, Int. J. Biomater. (2018). https://doi.org/10.1155/2018/6735426

  35. 35.

    K. Kombaiah, J.V. Judith, L.K. John, M. Bououdina, R.R. Jothi, A.A. Hamad, Mater. Chem. Phys. 204, 410–419 (2018)

  36. 36.

    B. Cullity, Element of X-ray Diffraction, 2nd edn. (Addison-Wesley, London, 1978)

  37. 37.

    M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Solid State Commun. 151, 1031 (2011)

  38. 38.

    O. Anamaria, W. Hui, X. Yaolin, L. Qiong, M. Hui, ACS Appl. Mater. Interfaces 9, 20719–20727 (2017)

  39. 39.

    M. Valodkar, S. Modi, A. Pal, S. Takore, Mater. Res. Bull. 46, 384–389 (2011)

Download references

Acknowledgements

Samson O. Aisida acknowledges the NCP-TWAS Postdoc Fellowship award (NCP-CAAD/TWAS_Fellow8408). FIE (90407830) acknowledges UNISA for VRSP Fellowship award; he also acknowledges the Grant by TETFUND under Contract number TETF/DESS/UNN/NSUKKA/STI/VOL.I/B4.33. Also, we thank Engr. Emeka Okwuosa for the sponsorship of 2014, 2016 and 2018 nano-conferences/workshops.

Author information

Correspondence to Samson O. Aisida or Fabian I. Ezema.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madubuonu, N., Aisida, S.O., Ahmad, I. et al. Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl. Phys. A 126, 72 (2020). https://doi.org/10.1007/s00339-019-3249-6

Download citation

Keywords

  • Biomaterials
  • Iron oxide
  • Nanoparticles
  • Antibacterial activities
  • Nanomedicine