Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural and electrical investigations of pure and rare earth (Er and Pr)-doped NiO nanoparticles

  • 64 Accesses

Abstract

Applying the coprecipitation technique, we synthesized PVA-capped Ni0.98RE0.02O (RE = Er md Pr) nanoparticles. Thermogravimetric analysis (TGA) was performed to study the thermal stability of the prepared samples to choose the calcination temperature accordingly. Thermal stability was attained at ~ 823 K with no further thermal decomposition beyond. The crystallinity and phase formation of the prepared samples were confirmed by powder X-ray diffraction XRD. Studying the effect of RE3+ doping on the structural parameters of NiO nanoparticles was facilitated by X-ray peak profile analysis, based on the Debye Scherer model, Williamson–Hall model and size strain plot. The doped samples exhibited smaller lattice parameter and strain, with the minimum strain along the (200) direction. Also, a smaller crystallite size was found for the doped samples, depending on the dopant’s ionic radius, giving rise to higher dislocation density and specific surface area. Transmission electron microscopy (TEM) proved the nanoscale of the prepared samples, in agreement with the XRD outcomes, and revealed slight agglomeration of homogeneous nanoparticles. DC conductivity indicated the semiconducting behavior of the prepared samples, triggered by Ni2+ vacancies. Hopping mechanism was found to be the conduction process with two activation energies, depending on the temperature range of study. The dielectric behavior was explained by Maxwell–Wagner interfacial polarization, in agreement with Koop’s theory. The correlated barrier hopping mechanism CBH was found to be the conduction mechanism. Moreover, the Nyquist plot was investigated. Doping by rare earth elements resulted in an increase in dielectric constant, AC and DC conductivities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, J. Electroanal. Chem. 682, 37 (2012)

  2. 2.

    K.O. Ukoba, A.C. Eloka-Eboka, F.L. Inambao (2018).

  3. 3.

    M. Arif, A. Sanger, A. Singh, J Elec Mater 47, 3451 (2018)

  4. 4.

    R.A. Soomro, Z.H. Ibupoto, M.I. Abro, M. Willander, J Solid State Electrochem 19, 913 (2015)

  5. 5.

    G. Bharathy, P. Raji, J. Mater. Sci. Mater. Electron. 28, 17889 (2017)

  6. 6.

    M. M. Abdullah, J. King Saud Univ. Sci. (2019)

  7. 7.

    L. Chen, L. Li, G. Li, J. Solid State Chem. 181, 2073 (2008)

  8. 8.

    V. Biju, M. Abdul Khadar, Mater. Sci. Eng. A 304–306, 814 (2001).

  9. 9.

    S.A. Makhlouf, Thin Solid Films 516, 3112 (2008)

  10. 10.

    S. Agrawal, A. Parveen, A. Azam, J. Lumin. 184, 250 (2017)

  11. 11.

    T. Chtouki, L. Soumahoro, B. Kulyk, H. Erguig, B. Elidrissi, B. Sahraoui, Optik 136, 237 (2017)

  12. 12.

    L.S. Nair, D. Chandran, V.M. Anandakumar, K. Rajendra Babu, Ceramics Int. 43, 11090 (2017)

  13. 13.

    S. Kerli, U. Alver, H. Yaykaşlı, Appl Surf Sci 318, 164 (2014)

  14. 14.

    MN Siddique, A Ahmed, P Tripathi (2020) Mater Chem Phys 239:121959.

  15. 15.

    D. Daksh, Y.K. Agrawal, Rev. Nanosci. Nanotech. 5, 1 (2016)

  16. 16.

    V. Ðor\d jević, B. Milićević, and M. D. Dramićanin, IntechOpen [Online]. Copyright 2, 25 (2017).

  17. 17.

    F. Benosman, Z. Dridi, Y. Al-Douri, and B. Bouhafs, International Journal of Modern Physics B (2016).

  18. 18.

    L. Hasni, M. Ameri, D. Bensaid, I. Ameri, S. Mesbah, Y. Al-Douri, J. Coutinho, J. Supercond. Nov. Magn. 30, 3471 (2017)

  19. 19.

    R.M. Kershi, F.M. Ali, M.A. Sayed, J. Adv. Ceram. 7, 218 (2018)

  20. 20.

    S. Belhachi, A. Lazreg, Z. Dridi, Y. Al-Douri, J. Supercond. Nov. Magn. 31, 1767 (2018)

  21. 21.

    Y. Benkaddour, A. Abdelaoui, A. Yakoubi, H. Khachai, Y. Al-Douri, S.B. Omran, A. Shankar, R. Khenata, C.H. Voon, D. Prakash, K.D. Verma, J. Supercond. Nov. Magn. 31, 395 (2018)

  22. 22.

    Z. Alsayed, M.S. Badawi, R. Awad, J. Electron. Mater. 48, 4925 (2019)

  23. 23.

    Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, Mater. Lett. 61, 3174 (2007)

  24. 24.

    B. R. Shanaj, X. R. John, J. Theor. Comput. Sci 3, (2016).

  25. 25.

    K.N. Patel, M.P. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Mater. Res. Bull. 106, 187 (2018)

  26. 26.

    K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Adv. Powder Technol. 29, 2394 (2018)

  27. 27.

    H.S. Jadhav, G.M. Thorat, J. Mun, J.G. Seo, J. Power Sources 302, 13 (2016)

  28. 28.

    J. Czarnecki, J. Therm. Anal. Calorim. 120, 139 (2015)

  29. 29.

    I. Hotovỳ, J. Huran, L. Spiess, J. Liday, H. Sitter, and Š. Hašcı́k, Vacuum 69, 237 (2002).

  30. 30.

    K.A. Aly, N.M. Khalil, Y. Algamal, Q.M.A. Saleem, J. Alloy Compd. 676, 606 (2016)

  31. 31.

    I. Dhanya, B. Sasi, J. Coat. (2013).

  32. 32.

    K.A. Aly, N.M. Khalil, Y. Algamal, Q.M.A. Saleem, Mater. Chem. Phys. 193, 182 (2017)

  33. 33.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

  34. 34.

    C. Wang, B.L. Cheng, S.Y. Wang, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, Thin Solid Films 485, 82 (2005)

  35. 35.

    Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 720 (2014)

  36. 36.

    C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995)

  37. 37.

    V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

  38. 38.

    A.M. Abdallah, H. Basma, R. Awad, Modern Appl. Sci. 13, p99 (2019)

  39. 39.

    P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

  40. 40.

    J. Biener, A. Wittstock, T.F. Baumann, J. Weissmüller, M. Bäumer, A.V. Hamza, Materials 2, 2404 (2009)

  41. 41.

    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, J. Nondestruct. Eval. 34, 14 (2015)

  42. 42.

    A. Love, a treatise on the mathematical theory of elasticity (1892).

  43. 43.

    H. Irfan, S. Anand, J. Asian Ceram. Soc. 6, 54 (2018)

  44. 44.

    R. Sivakami, S. Dhanuskodi, R. Karvembu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 43 (2016)

  45. 45.

    S.G. Pandya, J.P. Corbett, W.M. Jadwisienczak, M.E. Kordesch, Phys. E 79, 98 (2016)

  46. 46.

    Q. Lin, J. Xu, F. Yang, X. Yang, Y. He, J. Appl. Biomater. Funct. Mater. 16, 17 (2018)

  47. 47.

    U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Ceram. Int. 43, 1129 (2017)

  48. 48.

    E.J.W. Verwey, J.H. de Boer, Recl. Trav. Chim. Pays-Bas 55, 531 (1936)

  49. 49.

    C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk, T. Manoubi, Ceram. Int. 42, 5963 (2016).

  50. 50.

    A.A. Bahgat, H.A. Mady, A.S.A. Moghny, A.S. Abd-Rabo, S.E. Negm, J. Mater. Sci. Technol. 27, 865 (2011)

  51. 51.

    S.M. Reda, S.M. Al-Ghannam, Adv. Mater. Phys. Chem. 2, 75 (2012)

  52. 52.

    R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, J. Mol. Struct. 753, 119 (2005)

  53. 53.

    H.M.T. Farid, I. Ahmad, I. Ali, S.M. Ramay, A. Mahmood, G. Murtaza, J. Magn. Magn. Mater. 434, 143 (2017)

  54. 54.

    E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 41, 185005 (2008)

  55. 55.

    M.A. Almessiere, B. Unal, A. Baykal, I. Ercan, J. Inorg. Organomet. Polym. 29, 402 (2019)

  56. 56.

    X. Xu, W. Liu, H. Zhang, M. Guo, P. Wu, S. Wang, J. Gao, G. Rao, J. Appl. Phys. 117, 174106 (2015)

  57. 57.

    Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, J. Nanopart. Res. 13, 2235 (2011)

  58. 58.

    N. Bhakta, P.K. Chakrabarti, Appl. Phys. A 125, 73 (2019)

  59. 59.

    R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, M. Hajdúchová, Adv. Nat. Sci: Nanosci. Nanotechnol. 8, 045002 (2017)

  60. 60.

    P.A.L. Sheena, A. Sreedevi, C. Viji, V. Thomas, Eur. Phys. J. B 92, 13 (2019)

  61. 61.

    K.L. Routray, D. Behera, J. Mater. Sci. Mater. Electron. 29, 14248 (2018)

  62. 62.

    A. Jyotsana, G.S. Maurya, A.K. Srivastava, A.K. Rai, B.K. Ghosh, Appl. Phys. A 117, 1269 (2014)

  63. 63.

    J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, J. Alloy. Compd. 649, 362 (2015)

  64. 64.

    B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D Appl. Phys. 44, 355402 (2011)

  65. 65.

    S. Goel, B. Kumar, Appl. Phys. A 125, 289 (2019)

  66. 66.

    R. Samad, M. ud D. Rather, K. Asokan, and B. Want, Appl. Phys. A 125, 503 (2019).

  67. 67.

    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, J. Mater. Eng. Perform. 22, 2104 (2013)

  68. 68.

    V. Biju, M. Abdul Khadar, J. Mater. Sci. 36, 5779 (2001).

  69. 69.

    D. Arora, K. Asokan, S. Kumar, S. Kaur, P. Kaur, G.P. Singh, A. Mahajan, S. Kalia, N. Kalia, K. Seth, P. Kaur, D.P. Singh, J. Am. Ceram. Soc. 101, 4023 (2018)

  70. 70.

    F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, K. Khirouni, Appl. Phys. A 114, 911 (2014)

  71. 71.

    S.A. Mazen, S.F. Mansour, T.A. Elmosalami, H.M. Zaki, J. Alloy Compd. 472, 307 (2009)

  72. 72.

    S. Satpathy, N. Mohanty, A. Behera, B. Behera, Mater. Sci. Poland 32, 59 (2014)

  73. 73.

    J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. 93, 63 (2017)

  74. 74.

    I. Zeydi, A. Zaidi, J. Dhahri, M.A. Zaidi, M. Elhabradi, Appl. Phys. A 125, 656 (2019)

Download references

Author information

Correspondence to J. Al Boukhari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al Boukhari, J., Khalaf, A. & Awad, R. Structural and electrical investigations of pure and rare earth (Er and Pr)-doped NiO nanoparticles. Appl. Phys. A 126, 74 (2020). https://doi.org/10.1007/s00339-019-3247-8

Download citation

Keywords

  • NiO nanoparticles
  • TGA
  • DC conductivity
  • Dielectric parameters