Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Superhydrophobic and superhydrophilic properties of laser-ablated plane and curved surfaces

Abstract

We examine the hydrophobic and hydrophilic properties of the plane and curved surfaces of different materials ablated using 5 ns laser pulses in air. The difference in the contact angles between liquid and surface of the modified graphite and AlNiCo alloy rods using different fluencies of the ablating pulses are demonstrated. The wetting contact angle of ablated graphite rod was found to be 147°, i.e., the modified curved surfaces demonstrated the superhydrophobic properties. On the other hand, the superhydrophilic properties, with 7° wetting contact angle, were demonstrated in the case of ablated aluminum alloy. A schematic model was proposed for the application of the graphite rod as a membrane for the oil–water separation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    T.A. Otitoju, A.L. Ahmad, B.S. Ooi, J. Indus. Eng. Chem. 47, 19–40 (2017)

  2. 2.

    H.M. Van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955–1958 (1982)

  3. 3.

    Y.C. Jung, B. Bhushan, J. Phys. 22, 035104 (2010)

  4. 4.

    D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Appl. Surf. Sci. 357, 248–254 (2015)

  5. 5.

    P. Gregorčič, B. Šetina-Batič, M. Hočevar, Appl. Phys. A 123, 766 (2017)

  6. 6.

    A.-M. Kietzig, M.N. Mirvakili, S. Kamal, P. Englezos, S.G. Hatzikiriakos, J. Adh. Sci. Tech. 25, 2789–2809 (2011)

  7. 7.

    M.-T. Li, M. Liu, Y.-H. Yu, A.-W. Li, H.-B. Sun, Bull. Chem. Soc. Jpn. 92, 283–289 (2019)

  8. 8.

    J. Yong, F. Chen, Q. Yang, Z. Jiang, X. Hou, Adv. Mater. Inter. 5, 1701370 (2018)

  9. 9.

    Č. Donik, A. Kocijan, I. Paulin, M. Hočevar, P. Gregorčič, M. Godec, Appl. Surf. Sci. 453, 383–393 (2018)

  10. 10.

    U. Trdan, M. Hočevar, P. Gregorčič, Corros. Sci. 123, 21–26 (2017)

  11. 11.

    M. Conradi, T. Sever, P. Gregorčič, A. Kocijan, Coatings 9, 592 (2019)

  12. 12.

    M. Zupančič, M. Steinbücher, P. Gregorčič, I. Golobič, Appl. Ther. Eng. 91, 288–297 (2015)

  13. 13.

    P. Gregorčič, M. Zupančič, I. Golobič, Sci. Rep. 8, 7461 (2018)

  14. 14.

    M. Zupančič, M. Može, P. Gregorčič, I. Golobič, Appl. Surf. Sci. 399, 480–490 (2017)

  15. 15.

    S.V. Kirner, N. Slachciak, A.M. Elert, M. Griepentrog, D. Fischer, A. Hertwig, M. Sahre, I. Dörfel, H. Sturm, S. Pentzien, R. Koter, D. Spaltmann, J. Krüger, J. Bonse, Appl. Phys. A 124, 326 (2018)

  16. 16.

    J. Bonse, S. Kirner, M. Griepentrog, D. Spaltmann, J. Krüger, Mater. 11, 801 (2018)

  17. 17.

    M. Conradi, A. Drnovšek, P. Gregorčič, Sci. Rep. 8, 7457 (2018)

  18. 18.

    J. Noh, J.-H. Lee, S. Na, H. Lim, D.H. Jung, Jpn. J. Appl. Phys. 49, 106502 (2010)

  19. 19.

    J. Bekesi, J.J.J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, P. Simon, Appl. Phys. A 99, 691–695 (2010)

  20. 20.

    A. Rosenkranz, S. Fleischmann, C. Gachot, F. Mücklich, Adv. Eng. Mat. 17, 1645–1651 (2015)

  21. 21.

    Y.-Q. Liu, D.-D. Han, Z.-Z. Jiao, Y. Liu, H.-B. Jiang, X.-H. Wu, H. Ding, Y.-L. Zhang, H.-B. Sun, Nanoscale 9, 17933–17938 (2017)

  22. 22.

    K. Yin, D. Chu, X. Dong, C. Wang, J.-A. Duan, J. He, Nanoscale 9, 14229–14235 (2017)

  23. 23.

    J. Yong, Y. Fang, F. Chen, J. Huo, Q. Yang, H. Bian, G. Du, X. Hou, Appl. Surf. Sci. 389, 1148–1155 (2016)

  24. 24.

    S. Ye, Q. Cao, Q. Wang, T. Wang, Q. Peng, Sci. Rep. 6, 1–9 (2016)

  25. 25.

    G. Li, H. Fan, F. Ren, C. Zhou, Z. Zhang, B. Xu, S. Wu, Y. Hu, W. Zhu, J. Li, Y. Zeng, X. Li, J. Chu, D. Wu, J. Mater. Chem. A 4, 18832–18840 (2016)

  26. 26.

    A.S. Alnaser, S.A. Khan, R.A. Ganeev, E. Stratakis, Appl. Sci. 9, 1554 (2019)

  27. 27.

    C.-V. Ngo, D.-M. Chun, Appl. Surf. Sci. 435, 974–982 (2018)

  28. 28.

    C.-V. Ngo, D.-M. Chun, Adv. Eng. Mater. 20, 1701086 (2018)

  29. 29.

    L. Zhao, K. Zhao, W.-G. Yan, Z. Liu, Mater. 11, 2318 (2018)

  30. 30.

    S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, L. Chen, Mater. Sci. Eng. 69, 1–35 (2010)

  31. 31.

    S. Li, C. Yu, J. Yang, C. Zhao, M. Zhang, H. Huang, Z. Liu, W. Guo, J. Qiu, Energy Environ. Sci. 10, 1958–1965 (2017)

  32. 32.

    M. Ma, R.M. Hill, Current Opinion. Col. Inter. Sci. 11, 193–202 (2006)

  33. 33.

    R. Asmatulu, W.S. Khan, R.J. Reddy, M. Ceylan, Pol. Compos. 36, 1565–1573 (2014)

  34. 34.

    T.S. Meiron, A. Marmur, I.S. Saguy, J. Col. Inter. Sci. 274, 637–644 (2004)

  35. 35.

    L.J.D. Frink, A.G. Salinger, J. Chem. Phys. 110, 5969–5977 (1999)

  36. 36.

    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546–551 (1944)

  37. 37.

    S. Wang, L. Jiang, Adv. Mater. 19, 3423–3424 (2007)

  38. 38.

    N. Nuraje, W.S. Khan, Y. Lei, M. Ceylan, R. Asmatulu, J. Mater. Chem. A 1, 1929–1946 (2013)

  39. 39.

    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2000)

  40. 40.

    J. Drelich, E. Chibowski, Langmuir 26, 18621–18623 (2010)

  41. 41.

    K.J. Lu, Y. Chen, T.-S. Chung, Water Res. 162, 64–77 (2019)

  42. 42.

    N. Nuraje, R. Asmatulu, R.E. Cohen, M.F. Rubner, Langmuir 27, 782–791 (2011)

  43. 43.

    R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, J. Mater. Chem. A 5, 16025–16058 (2017)

  44. 44.

    J. Guo, X. Ma, X. Si, Z. Yang, J. Zhao, IOP Conference Series. Mater. Sci. Eng. 538, 012021 (2019)

  45. 45.

    U. Zulfiqar, S.Z. Hussain, T. Subhani, I. Hussain, Habib-ur-Rehman Col Surf A Physicochem Eng Asp. 539, 391–398 (2018)

  46. 46.

    J. Cui, A. Xie, S. Zhou, S. Liu, Q. Wang, Y. Wu, M. Meng, J. Lang, Z. Zhou, Y. Yan, J. Coll. Inter. Sci. 1, 278–286 (2019)

  47. 47.

    C. Kunz, T.N. Büttner, B. Naumann, A.V. Boehm, E. Gnecco, J. Bonse, C. Neumann, A. Turchanin, F.A. Müller, S. Gräf, Carbon 133, 176–185 (2018)

  48. 48.

    R. Ramachandran, M. Kozhukhova, K. Sobolev, M. Nosonovsky, Entropy 18, 132 (2016)

  49. 49.

    J. Long, M. Zhong, H. Zhang, P. Fan, J. Colloid Inter. Sci. 441, 1 (2015)

  50. 50.

    J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, J. Laser Appl. 27, S29107 (2015)

  51. 51.

    L.B. Boinovich, A.M. Emelyanenko, K.A. Emelyanenko, A.G. Domantovsky, A.A. Shiryaev, Appl. Surf. Sci. 379, 111 (2016)

  52. 52.

    A. Strålin, T. Hjertberg, Appl. Surf. Sci. 74, 263–275 (1994)

  53. 53.

    V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnol. 17, 3234–3238 (2006)

  54. 54.

    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049–4054 (2008)

  55. 55.

    A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821–4827 (2009)

  56. 56.

    M. Može, M. Zupančič, M. Hočevar, I. Golobič, P. Gregorčič, Appl. Surf. Sci. 490, 220–230 (2019)

  57. 57.

    V.D. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Appl. Surf. Sci. 365, 153–159 (2016)

  58. 58.

    P. Gregorčič, M. Conradi, L. Hribar, M. Hočevar, Mater. 11, 2240 (2018)

  59. 59.

    T.F. Qahtan, M.A. Gondal, I.O. Alade, M.A. Dastageer, Sci. Rep. 7, 7531–7538 (2017)

  60. 60.

    X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Science 335, 67–70 (2012)

  61. 61.

    D. Sun, W. Wang, D. Yu, Cellulose 24, 4519–4531 (2017)

  62. 62.

    J. Long, P. Fan, M. Zhong, H Zhang Y Xie, C Lin. Appl Surf. Sci 311, 461–467 (2014)

  63. 63.

    G.S. Boltaev, R.A. Ganeev, Sh Reyimboyev, B.R. Sobirov, T.Y. Shermatov, N.S. Khalilova, V.V. Kim, Z.T. Azamatov, M. Iqbal, ShA Khan, A.S. Alnaser, J. Phys. D.: Appl. Phys. 53, 075301 (2020)

Download references

Author information

Correspondence to R. A. Ganeev or A. S. Alnaser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boltaev, G.S., Khan, S.A., Ganeev, R.A. et al. Superhydrophobic and superhydrophilic properties of laser-ablated plane and curved surfaces. Appl. Phys. A 126, 62 (2020). https://doi.org/10.1007/s00339-019-3245-x

Download citation

Keywords

  • Laser ablation
  • Superhydrophobic
  • Superhydrophilic
  • Graphite
  • Aluminum alloy