Advertisement

Applied Physics A

, 126:89 | Cite as

Exploring the direct effect of intermediate band semiconductor materials on the structural, thermal and optical properties of PMMA nanocomposite

  • M. H. Abdel-Kader
  • Mohamed Bakr MohamedEmail author
Article
  • 51 Downloads

Abstract

In this work, polymethylmethacrylate (PMMA) doped with SnS2, Sn0.75Fe0.25S2, and Sn0.75Cr0.25S2 nanoparticles films were prepared using both thermolysis and casting procedures. The purity, structural and shape of the nanofillers were confirmed by Rietveld refinement method. The compositional changes for nanocomposite films were studied by energy dispersive spectrometry technique. Nanoparticles morphology and particle size were examined by transmission electron microscopy (TEM) technique. Proper interactions between added nanofillers and the polymer matrix were discussed in detail by Fourier transform infrared spectroscopy technique (FTIR). The variations in the FTIR absorption bands position and their shape proved the effect of doping on the composite films. The effect of dopant elements on the thermal properties of PMMA polymer matrix has been investigated by thermogravimetric analysis (TGA). Results showed an improvement in the degradation temperature of doped polymers compared to undoped ones. Clear regular arrangements of images for nanoparticles and composite films have been represented by scanning electron microscopy (SEM). Different optical parameters have been examined using UV–vis spectroscopy technique. Due to the high transmittance values in the wavelength range of 320–800 nm, the formed composite films could be used as protective window layers for solar cells. The energy gap values decreased from 4.3 eV for undoped PMMA polymer to 4, 3.85, and 3.16 eV depending on the doping element.

Keywords

Nano SnS2 Doped PMMA Structure Absorption Thermal 

Notes

References:s

  1. 1.
    Z.K. Heiba, M.B. Mohamed, J. Mol. Struct. 1181, 507 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    K. Gurunathan, A. Vadivel Murugan, R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, Mater. Chem. Phys. 61, 173 (1999)CrossRefGoogle Scholar
  3. 3.
    A. Kurt, Turk. J. Chem. 34, 67 (2010)Google Scholar
  4. 4.
    Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, A.M. El-Naggar, J. Inorg. Organomet. Polym. (2019).  https://doi.org/10.1007/s10904-019-01320-y CrossRefGoogle Scholar
  5. 5.
    M. Kumar, S. Arun, P. Upadhyaya, G. Pugazhenthi, Int. J. Mech. Mater. Eng. 7, 10 (2015)Google Scholar
  6. 6.
    S.M. Khaled, R. Sui, P.A. Charpentier, A.S. Rizkalla, Langmuir 23, 3988 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. Yan, Y. Jiang, J. Power Sourc. 382, 128 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    O. Lyutakov, I. Goncharova, S. Rimpelova, K. Kolarova, J. Svanda, V. Svorcik, Mater. Sci. Eng. C 49, 534 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Cao, L. Wang, Y. Shang, M. Fang, L. Deng, J. Gao, J. Li, H. Chen, X. He, Electrochim. Acta 111, 674 (2013)CrossRefGoogle Scholar
  10. 10.
    W. Pan, H. Zhang, Y. Chen, J. Mater. Sci. Technol. 25(02), 247–250 (2009)Google Scholar
  11. 11.
    S. Tabanli, G. Bilir, G. Eryurek, J. Luminescence 182, 146 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    S. Khursheed, P. Biswas, V.K. Singh, V. Kumar, H.C. Swart, J. Sharma, Vacuum 159, 414 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    N. Deep, P. Mishra, Mater. Today Proc. 5, 28328 (2018)CrossRefGoogle Scholar
  14. 14.
    Y.H. Hu, C.Y. Chen, C.C. Wang, Polym. Degrad. Stab. 84, 545 (2004)CrossRefGoogle Scholar
  15. 15.
    R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Solid State Ionics 177, 2679 (2006)CrossRefGoogle Scholar
  16. 16.
    M.M. Silva, S.C. Barros, M.J. Smith, J.R.M. Callum, Electrochim. Acta 49, 1887 (2004)CrossRefGoogle Scholar
  17. 17.
    G. Chiodelli, P. Ferloni, A. Magistris, M. Sanesi, Solid State lonics 28, 1009 (1988)CrossRefGoogle Scholar
  18. 18.
    Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Appl. Phys. A 125(2), 132 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    Z.K. Heiba, M.B. Mohamed, N.G. Imam, Int. Polymer Process. 33(2), 226 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Amanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K.P. Homme, L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Z.K. Heiba, M.B. Mohamed, M.H.A. Kader, J. Electron. Mater. 47(5), 2945 (2018)CrossRefGoogle Scholar
  22. 22.
    R. Bissessur, D. Schipper, Mater. Lett. 62, 1638 (2008)CrossRefGoogle Scholar
  23. 23.
    M.B. Mohamed, M.H. Abdel-Kader, J. Inorg. Organomet. Polym. (2019).  https://doi.org/10.1007/s10904-019-01364-0 CrossRefGoogle Scholar
  24. 24.
    L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268, 334 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    J. Rodríguez-Carvajal, Phys. B (Amsterdam Neth) 192, 55 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    A. Bhaumik, A. Haque, P. Karnati, M.F.N. Taufique, R. Patel, K. Ghosh, Thin Solid Films 572, 126–133 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M.F.N. Taufique, A. Haque, P. Karnati, K. Ghosh, J. Elect. Mater. 47(11), 6731–6745 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kaniappan, S. Latha, Int. J. Chemtechnol. Res. 3(2), 708 (2011)Google Scholar
  29. 29.
    Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, J. Inorg. Organomet. Polym. (2019).  https://doi.org/10.1007/s10904-019-01320-y CrossRefGoogle Scholar
  30. 30.
    S. Arif, F. Saleemi, M.S. Rafique, F. Naab, O. Toader, A. Mahmood, U. Aziz, Nucl. Inst. Methods Phys. Res. B. 387, 86 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    J.C.M. Suarez, E.B. Mano, C. Monteiro, M. Ines, B. Tavares, J. Appl. Polym. Sci. 85, 886 (2002)CrossRefGoogle Scholar
  32. 32.
    M.F.H. Al-Kadhemy, W.H. Abaas, Res. Rev. Polym. 4(2), 45 (2013)Google Scholar
  33. 33.
    Y. Pauleau, Materials surface processing by directed energy techniques (Elsevier Limited Published in Association with European Material Research Society, New York, 2006)Google Scholar
  34. 34.
    A. Tawansi, A. El-khodary, H.M. Zidan, S.I. Badr, Polym. Testing 21, 381–387 (2002)CrossRefGoogle Scholar
  35. 35.
    R.L. Madan, Organic chemistry (Tata McGraw Hill Education Private Ltd, New Delhi, 2013)Google Scholar
  36. 36.
    J. Zhang, S. Luo, L. Gui, Y. Tang, Mater. Res. Soc. 435, 173–178 (1996)CrossRefGoogle Scholar
  37. 37.
    Ž. Antić, R. Krsmanović, M.M. Cincović, M.D. Dramićanin, Acta Phys. Pol. 117, 831 (2010)CrossRefGoogle Scholar
  38. 38.
    N.S. Alghunaim, Results Phys. 5, 331 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)ADSCrossRefGoogle Scholar
  40. 40.
    M. Kumar, V. Chaudhary, K. Suresh, G. Pugazhenthi, RSC Adv. 5, 39810 (2015)CrossRefGoogle Scholar
  41. 41.
    O.G. Abdullah, S.B. Aziz, M.A. Rasheed, J. Mater. Sci.: Mater. Electron. 28(5), 4513 (2017)Google Scholar
  42. 42.
    H.M. Zidan, M. Abu-Elnader, Phys. B 355, 308 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    E.P.S. Arlindo, J.A. Lucindo, C.M.O. Bastos, P.D. Emmel, M.O. Orlandi, J. Phys. Chem. C 116(23), 12946 (2012)CrossRefGoogle Scholar
  44. 44.
    H.R.E. Moynihan, J. Polym. Sci. 22, 363 (1956)ADSCrossRefGoogle Scholar
  45. 45.
    O.B. Mergen, E. Arda, S. Kara, O. Pekcan, Polym. Composite 40(5), 1862 (2019)CrossRefGoogle Scholar
  46. 46.
    B. Kulyk, V. Kapustianyk, V. Tsybulskyy, O. Krupka, B. Sahraoui, J. Alloys Compd. 502, 24 (2010)CrossRefGoogle Scholar
  47. 47.
    P. Karnati, A. Haque, M.F.N. Taufique, K. Ghosh, Nanomaterials 8(2), 1–12 (2018)CrossRefGoogle Scholar
  48. 48.
    N. Venkatram, D. NarayanaRao, M.A. Akundi, Opt. Express 13, 867 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    K. Vijayalakshmi, A. Renitta, K. Karthick, Ceram. Int. 40, 6171 (2014)CrossRefGoogle Scholar
  50. 50.
    M.B. Mohamed, M.H. Abdel-Kader, Appl. Phys. A 125(3), 209 (2019)ADSCrossRefGoogle Scholar
  51. 51.
    S.J. Gnanamuthu, S.J. Jeyakumar, I.K. Punithavathy, P.C.J. Prabhakar, M. Suganya, K. Usharani, A.R. Balu, Optik 127(8), 3999 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, Int. J. Appl. Ceram. 16(3), 1209 (2019)CrossRefGoogle Scholar
  53. 53.
    A.A. Alhazime, M.B. Mohamed, M.H. Abdel-Kader, J. Inorg. Organomet. Polym. 29(2), 436 (2019)CrossRefGoogle Scholar
  54. 54.
    E.F. Keskenler, G. Turgut, S. Dogan, Superlattices Microstr. 52, 107 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    M.B. Mohamed, Z.K. Heiba, N.G. Imam, J. Mol. Struct. 1163, 442 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    H.M. Zidan, A. El-Khodary, I.A. El-Sayed, H.I. El-Bohy, J. Appl. Polym. Sci. 117, 1416 (2010)Google Scholar
  57. 57.
    S. Elliott, The physics and chemistry of solids (Wiley, New York, 1998)Google Scholar
  58. 58.
    F. Yakuphanoglu, Y. Caglar, S. Ilican, M. Caglar, Phys. B 394, 86 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    G. Turgut, E.F. Keskenler, S. Aydın, E. Sönmez, S. Dogan, B. Düzgün, M. Ertugrul, Superlattices Microstr. 56, 107 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceTaibah UniversityMedinaSaudi Arabia
  2. 2.Physics Dept., Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations