Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dynamic testing of nanosecond laser pulse induced plasma shock wave propulsion for microsphere

  • 52 Accesses

Abstract

The present work introduces a laser pulse micro-propulsion system for microsphere propulsion and uses the micro-propulsion system to investigate the propulsion mechanism, propulsion mode, and potential application. The plasma (or shock wave) generation at the tip of micro-propulsion system due to the laser energy emitted from the system tip exceeds the ionization threshold of air. Meanwhile, the propagation characteristics of shock wave such as propagation distance, velocity and pressure have been calculated, and then succeeded in realizing propulsion of microsphere via shock wave recoil effect. The result demonstrated that the propulsion is dominated by the shock wave ejection mechanism. In addition, the laser energy and microsphere diameters are varied to study the influence on microsphere movement efficiency. The experimental results show that the microsphere movement efficiency depends on the laser energy and microsphere size. Analysis of the experimental and the simulation results suggest that the micro-propulsion system may have significant influence on directional propulsion of particles from the substrate surface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B.V. Lakatosh, D.B. Abramenko, V.V. Ivanov, V.V. Medvedev, V.M. Krivtsun, K.N. Koshelev, A.M. Yakunin, Laser. Phys. Lett. 15, 016003 (2018)

  2. 2.

    A. Kantrowitz, Aeronaut. Aeronaut. 10, 74 (1972)

  3. 3.

    A.V. Pakhomov, D.A. Gregory, AIAA J. 38, 725 (2000)

  4. 4.

    A.L. Klein, W. Bouwhuis, C.W. Visser, H. Lhuissier, C. Sun, J.H. Snoeijer, E. Villermaux, D. Lohse, H. Gelderblom, Phys. Rev. Appl. 3, 044018 (2015)

  5. 5.

    Z.Y. Zheng, J. Zhang, X. Lu, Z.Q. Hao, M.H. Xu, Z.H. Wang, Z.Y. Wei, Chin. Phys. Lett. 22, 1725 (2005)

  6. 6.

    H.C. Yu, H.Y. Li, Y. Wang, L.G. Cui, S.Q. Liu, J. Yang, Opt. Laser Technol. 100, 57 (2018)

  7. 7.

    V.P. Ageev, A.I. Barchukov, F.V. Bunkin, V.I. Konov, V.P. Korobeinikov, B.V. Putjatin, V.M. Hudjakov, Acta Astronaut. 7, 79 (1980)

  8. 8.

    Z.Y. Zheng, J. Zhang, Z.Q. Hao, Z. Zhang, M. Chen, X. Lu, Z.H. Wang, Z.Y. Wei, Opt. Express 13, 10616 (2005)

  9. 9.

    N. Zhang, X.N. Zhu, J.J. Yang, X.L. Wang, M.W. Wang, Phys. Rev. Lett. 99, 167602 (2007)

  10. 10.

    M. Banaee, S.H. Tavassoli, Polym. Test. 31, 759 (2012)

  11. 11.

    C.R. Phipps, J.R. Luke, T. Lippert, M. Hauer, A. Wokaun, Appl. Phys. A. 79, 1835 (2004)

  12. 12.

    N. Zhang, W.W. Liu, Z.J. Xu, M.W. Wang, X.N. Zhu, J. Appl. Phys. 104, 033104 (2008)

  13. 13.

    Q.S. Wang, L. Jiang, J.Y. Sun, C.J. Pan, W.N. Han, G.Y. Wang, H. Zhang, C.P. Grigoropoulos, Y.F. Lu, Photonics Res. 5, 488 (2017)

  14. 14.

    H. Zhang, F.T. Zhang, X. Du, G.P. Dong, J.R. Qiu, Opt. Express 23, 1370 (2015)

  15. 15.

    S.G. Demos, R.A. Negres, R.N. Raman, N. Shen, A.M. Rubenchik, M.J. Matthews, Opt. Express 24, 7792 (2016)

  16. 16.

    H.C. Yu, L.G. Cui, K. Zhang, J. Yang, H.Y. Li, Appl. Phys. A. 124, 37 (2018)

  17. 17.

    H.Y. Li, Y.D. Zhang, J. Li, L. Qiang, Opt. Lett. 36, 1996 (2011)

  18. 18.

    H.C. Yu, H.Y. Li, L.G. Cui, S.Q. Liu, J. Yang, Sci. Rep. 7, 16299 (2017)

  19. 19.

    N. Zhang, Y.B. Zhao, X.N. Zhu, Opt. Express 12, 3590 (2004)

  20. 20.

    D. Kurilovich, A.L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, O.O. Versolato, Phys. Rev. Appl. 6, 014018 (2016)

  21. 21.

    J.M. Lee, K.G. Watkins, J. Appl. Phys. 89, 6496 (2001)

  22. 22.

    R.W. Fenn III, S. Middleman, AlChE J. 15, 379 (1969)

  23. 23.

    A.V. Hill, P. Roy, Soc. B-Biol. Sci. 102, 381 (1927)

  24. 24.

    L.Y. Yue, Z.B. Wang, W. Guo, L. Li, J. Phys. D-Appl. Phys. 45, 365106 (2012)

  25. 25.

    D. Kurilovich, M.M. Basko, D.A. Kim, F. Torretti, R. Schupp, J.C. Visschers, J. Scheers, R. Hoekstra, W. Ubachs, O.O. Versolato, Phys. Plasmas 25, 012709 (2018)

  26. 26.

    W. Zapka, W. Ziemlich, A.C. Tam, Appl. Phys. Lett. 58, 2217 (1991)

  27. 27.

    M. Boueri, M. Baudelet, J. Yu, X.L. Mao, S.S. Mao, R. Russo, Appl. Surf. Sci. 255, 9566 (2009)

  28. 28.

    X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. A. 80, 237 (2005)

  29. 29.

    M.R. Ahmad, Y. Jamil, M.Q. Zakaria, T. Hussain, R. Ahmad, Laser Phys. Lett. 12, 076101 (2015)

  30. 30.

    H. Qiang, J. Chen, B. Han, Z.H. Shen, J. Lu, X.W. Ni, Opt. Express 22, 17532 (2014)

  31. 31.

    R.R. Fang, A. Vorobyev, C.L. Guo, Light-Sci. Appl. 6, e16256 (2017)

  32. 32.

    Z.Q. Chen, X.B. Wang, D.L. Zuo, P.X. Lu, J.W. Wang, Laser Phys. Lett. 13, 056002 (2016)

  33. 33.

    J.G. Lunney, R. Jordan, Appl. Surf. Sci. 127–129, 941 (1998)

  34. 34.

    B. Wu, Y.C. Shin, H. Pakhal, N.M. Laurendeau, R.P. Lucht, Phys. Rev. E 76, 026405 (2007)

  35. 35.

    C.R. Phipps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, J. Appl. Phys. 64, 1083 (1988)

  36. 36.

    S.J. Davies, C. Edwards, G.S. Taylor, S.B. Palmer, J. Phys. D-Appl. Phys. 26, 329 (1993)

  37. 37.

    T. Pozar, A. Babnik, J. Mozina, Opt. Express 23, 7978 (2015)

  38. 38.

    J.P. Reilly, A. Bailanryne, J.A. Woodroffe, AIAA J. 17, 1098 (1979)

  39. 39.

    T.F. Zhang, H.C. Chang, Y.P. Wu, P.S. Xiao, N.B. Yi, Y.D. Lu, Y.F. Ma, Y. Huang, K. Zhao, X.Q. Yan, Z.B. Liu, J.G. Tian, Y.S. Chen, Nat. Photonics 9, 471 (2015)

  40. 40.

    Z.H. Zhu, W. Gao, C.Y. Mu, H.W. Li, Optica 3, 212 (2016)

  41. 41.

    Y. Lu, W.D. Song, Y. Zhang, T.S. Low, Proc. SPIE 3550, 7 (1998)

  42. 42.

    Q.Q. Gu, G.Y. Feng, G.R. Zhou, J.H. Han, J. Luo, J.L. Men, Y. Jiang, Appl. Surf. Sci. 457, 604 (2018)

  43. 43.

    T. Hooper, C. Cetinkaya, J. Adhesion Sci. Technol. 17, 763 (2003)

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (No. 61605031) and the Fundamental Research Funds for the Central Universities.

Author information

Correspondence to Hanyang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 36152 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Li, H., Wu, X. et al. Dynamic testing of nanosecond laser pulse induced plasma shock wave propulsion for microsphere. Appl. Phys. A 126, 63 (2020). https://doi.org/10.1007/s00339-019-3243-z

Download citation

Keywords

  • Laser pulse
  • Propulsion
  • Plasma
  • Shock wave
  • Momentum recoil
  • Mechanism