Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Structure and microwave dielectric properties of low-temperature sinterable A2.5VMoO8 (A = Mg, Zn) molybdovanadate ceramics

  • 51 Accesses

Abstract

A2.5VMoO8 (A = Mg, Zn) molybdovanadate ceramics have been prepared through conventional solid-state ceramic route. Phase purity of these ceramics was confirmed using powder X-ray diffraction studies. Co-existence of both MoO42− and VO43− tetrahedra in the unit cell of these molybdovanadates has been identified through laser Raman spectroscopy. Sintered A2.5VMoO8 (A = Mg, Zn) ceramics show homogenous and dense microstructure. Mg2.5VMoO8 ceramic has a dielectric constant (εr) of 8.8, unloaded quality factor of 4800 at 10.85 GHz and temperature coefficient of resonant frequency (τf) of -58 ppm/ ℃ whereas Zn2.5VMoO8 ceramic exhibits a dielectric constant of 11.5, unloaded quality factor of 2500 at 9.18 GHz and temperature coefficient of resonant frequency τf of 115 ppm/ ℃.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M.T. Sebastian, R. Ubic, H. Jantunen, Microwave materials and applications, vol. 1 (Wiley, New Jersey, 2017)

  2. 2.

    A. Isapour, A. Kouki, IEEE-MTT 67, 868 (2019)

  3. 3.

    A. Raveendran, M.T. Sebastian, S. Raman, J. Elec, Mater 48, 2601 (2019)

  4. 4.

    I.M. Reaney, J. Am. Ceram. Soc. 89, 2063 (2006)

  5. 5.

    M.T. Sebastian, Dielectric Materials for wireless communication, 1st edn. (Elsevier, Amsterdam, 2008)

  6. 6.

    L. Golonka, P. Bembnowickz, D. Jurkow, K. Malecha, H. Roguszczak, R. Tadaszak, Opt. Appl. 41, 383 (2011)

  7. 7.

    Y. Imanka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, Boston, 2005)

  8. 8.

    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

  9. 9.

    H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, J. Eur. Ceram. Soc. 23, 2485 (2003)

  10. 10.

    Z. Fu, P. Liu, J. Ma, X. Chen, H. Zhang, Mat. Lett 164, 436 (2016)

  11. 11.

    N.J. VanDerLaag, M.D. Snel, P.C.M.M. Magusin, G. De With, J. Eur. Ceram. Soc. 24, 2417 (2004)

  12. 12.

    B. Liu, X.Q. Liu, X.M. Chen, J. Mater. Chem. C 4, 4684 (2016)

  13. 13.

    X. Lu, W. Bian, Y. Li, H. Zhu, J. Am. Ceram. Soc. 101, 1646 (2017)

  14. 14.

    Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ullah, X.H. Wang, W. Lei, J. Eur. Ceram. Soc. 37, 3065 (2017)

  15. 15.

    P. Zhang, H. Xie, Y. Zhao, X. Zhao, M. Xiao, J. Alloy. Compd. 690, 688 (2017)

  16. 16.

    J. Li, B. Yao, D. Xu, Z. Huang, Z. Wang, X. Wu, C. Fan, J. Alloy. Compd. 663, 494 (2016)

  17. 17.

    H.L. Pan, M.T. Liu, M.F. Li, F. Ling, H.T. Wu, J. Mater. Sci. Mater. Electron. 29, 999 (2017)

  18. 18.

    Y. Zhang, Y. Chang, M. Xiang, S. Liu, H. Liu, Ceram. Int. 42, 3542 (2016)

  19. 19.

    R. Ubic, S. Letourneau, S. Thomas, G. Suboth, M.T. Sebastian, Chem. Mater. 22, 4572 (2010)

  20. 20.

    N.X. Wu, J.J. Bian, Int. J. Appl. Ceram. Technol. 8, 1494 (2011)

  21. 21.

    H. Li, Z. Huang, L. Cheng, S. Kong, S. Liu, Ceram. Int. 43, 4570 (2017)

  22. 22.

    J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, J. Electron. Mater. 48, 4010 (2019)

  23. 23.

    Z.H. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, L. Miao, C.R. Zhou, G.H. Chen, J. Mater. Sci. Mater. Electron. 29, 1817 (2018)

  24. 24.

    J. Dhanya, P.V. Sarika, R. Naveenraj, E.K. Suresh, R. Ratheesh, Int. J. Appl. Ceram. Technol. 16, 1150 (2019)

  25. 25.

    E.K. Suresh, A.N. Unnimaya, A. Surjith, R. Ratheesh, Ceram. Int. 39, 3635 (2013)

  26. 26.

    L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Ceram. Int. 40, 16835 (2014)

  27. 27.

    A.N. Unnimaya, E.K. Suresh, J. Dhanya, R. Ratheesh, J. Mater. Sci. Mater. Electron. 25, 1127 (2014)

  28. 28.

    M.T. Sebastian, H. Wang, H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016)

  29. 29.

    R. Naveenraj, E.K. Suresh, J. Dhanya, R. Ratheesh, Eur. J. Inorg. Chem 2019, 946 (2019)

  30. 30.

    D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 2147 (2010)

  31. 31.

    D. Zhou, L.X. Pang, H. Wang, J. Guo, X. Yao, C.A. Randall, J. Mater. Chem. 21, 1842 (2011)

  32. 32.

    D. Zhou, L.X. Pang, J. Guo, H. Wang, X. Yao, C.A. Randall, Inorg. Chem. 50, 12733 (2011)

  33. 33.

    D. Zhou, L.X. Pang, W.G. Qu, C.A. Randall, J. Guo, Z.M. Qi, T. Shao, X. Yao, RSC Adv. 3, 5009 (2013)

  34. 34.

    D. Zhou, L.X. Pang, Z.M. Qi, Inorg. Chem. 53, 9222 (2014)

  35. 35.

    H. Xiang, C.C. Li, Y. Tang, L. Fang, J. Eur. Ceram. Soc. 37, 3959 (2017)

  36. 36.

    B.W. Hakki, P.D. Coleman, I.R.E. Trans, Mircrow. Theory Tech. 8, 402 (1960)

  37. 37.

    J. Mazierska, M.V. Jacob, A. Harring, J. Krupka, P. Barnwell, T. Sims, J. Eur. Ceram. Soc. 23, 2611 (2003)

  38. 38.

    V.G. Zubkov, I.A. Leonidov, K.R. Poeppelmeier, V.L. Kozhevnikov, J. Solid State Chem. 111, 197 (1994)

  39. 39.

    W.D. Harding, H.H. Kung, V.L. Kozhevnikov, K.R. Poeppelmeier, J. Catal. 144, 597 (1993)

  40. 40.

    M.M. Velichkova, R. Iordanova, Process. Appl. Ceram. 3, 181 (2009)

  41. 41.

    X. Wang, J.D. Pless, D.A. Vander Griend, P.C. Stair, K.R. Poeppelmeier, Z. Hu, J.D. Jorgensen, J. Alloy Compd. 379, 87 (2004)

  42. 42.

    J.D. Pless, H.S. Kim, J.P. Smit, X. Wang, P.C. Stair, K.R. Poeppelmeier, Inorg. Chem. 45, 514 (2006)

  43. 43.

    J.P. Smit, H.S. Kim, I. Saratovsky, K.B. Stark, G. Fitzgerald, G.W. Zajac, J.F. Gaillard, R. Poeppelmeier, P.C. Stair, Inorg. Chem. 46, 6556 (2007)

  44. 44.

    N. Weinstock, H. Schulze, Muler. J. Chem. Phys. 59, 5063 (1973)

  45. 45.

    V.N. Moiseenko, Y.I. Bogatirjov, A.M. Jeryemenko, S.V. Akimov, J. Raman Spectrosc. 31, 539 (2000)

  46. 46.

    J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, Ceram. Int. 44, 6699 (2018)

  47. 47.

    R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37, 722 (2006)

  48. 48.

    R.L. Frost, S.J. Palmer, J. Cejka, J. Sejkora, J. Plasil, S. Bahfenne, E.C. Keeffe, J. Raman Spectrosc. 42, 1701 (2011)

  49. 49.

    D.J. Barber, K.M. Moulding, J. Zhou, J. Mater. Sci. 32, 1531 (1997)

  50. 50.

    S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997)

  51. 51.

    M.P. Mcneal, S.J. Jang, R. Newnham, J. Appl. Phys. 83, 3288 (1998)

  52. 52.

    C.L. Huang, K.H. Chiang, S.C. Chuang, Mater. Res. Bull. 39, 629 (2004)

  53. 53.

    J. Dhanya, A.V. Basiluddeen, R. Ratheesh, Scr. Mater. 132, 1 (2017)

Download references

Acknowledgements

The authors are thankful to Dr. N. Raghu, Director, C-MET, Thrissur for extending the facilities to the work. The authors are also thankful to the Board of Research in Nuclear Sciences, Mumbai for financial support under Grant number 34/15/01/2014-BRNS/0906.

Author information

Correspondence to R. Ratheesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naveenraj, R., Arun, N.S. & Ratheesh, R. Structure and microwave dielectric properties of low-temperature sinterable A2.5VMoO8 (A = Mg, Zn) molybdovanadate ceramics. Appl. Phys. A 126, 53 (2020). https://doi.org/10.1007/s00339-019-3232-2

Download citation