Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium

  • 60 Accesses

Abstract

We study optical surface second-harmonic generation (SHG) from the plasmonic nanoshells because they can improve and enhance nonlinear optical effects. We also investigate the SHG from the surface of spherical and cylindrical core-shell nanoparticles coated with a strong nonlinear material such as graphene due to its attractive plasmonic behaviour and unique properties of the surface plasmons in graphene. We demonstrate theoretically a giant and tunable second-order harmonic radiation which enhanced through the excitation of the surface plasmon resonance, can be observed at the surface of both spherical and cylindrical nanoshells because of symmetry-breaking at interface, which makes SHG as a valuable and powerful technique for applications in sensing and surface spectroscopy. We present the surface SHG strongly depends on the particle shape and size, the dielectric of embedding medium and core, the type of metal and graphene as a coating nonlinear material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M. Kauranen, A.V. Zayats, Nat. Photonics 6, 737 (2012)

  2. 2.

    P. Ginzburg, A. Krasavin, Y. Sonnefraud, A. Murphy, R.J. Pollard, S.A. Maier, A.V. Zayats, Phys. Rev. B 86, 085422 (2012)

  3. 3.

    T. F. Heinz, Nonlinear Surface Electromagnetic Phenomena, H-E. Ponath and G. I. Stegeman, eds. (Elsevier, 1991)

  4. 4.

    J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Phys. Rev. Lett. 83, 4045 (1999)

  5. 5.

    J. Nappa, I. Russier-Antoine, E. Benichou, Ch. Jonin, P.F. Brevet, J. Chem. Phys 125, 184712 (2006)

  6. 6.

    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2008)

  7. 7.

    M. Galanty, O. Shavit, A. Weissman, H. Aharon, D. Gachet, E. Segal, A. Salomon, Light: Science & Applications 7, 49 (2018)

  8. 8.

    D. Timbrell, J.W. You, Y.S. Kivshar, N.C. Panoiu, Sci. Rep. 8, 1–9 (2018)

  9. 9.

    D. Javurek and J. pe\(\check{r}\)ina Jr, Sci. Rep. 9, 4679 (2019)

  10. 10.

    J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Phys. Rev. B 21, 4389 (1980)

  11. 11.

    J.-P. Abid, J. Nappa, H.H. Girault, P.-F. Brevet, J. Chem. Phys. 121, 12577 (2004)

  12. 12.

    C. Forestiere, A. Capretti, G. Miano, J. Opt. Soc. Am. B 30, 2355–2364 (2013)

  13. 13.

    Y.R. Shen, Ann. Rev. Mater. Sci. 16, 69 (1986)

  14. 14.

    Y.R. Shen, Nature 337, 519 (1989)

  15. 15.

    P.F. Brevet, J. Chem. Soc., Faraday Trans. 92, 4547 (1996)

  16. 16.

    J.F. McGilp, J. Phys. D: Appl. Phys. 29, 1812 (1996)

  17. 17.

    J. Shan, J.I. Dadap, I. Stiopkin, G.A. Reider, T.F. Heinz, Phys. Rev. A 73, 023819 (2006)

  18. 18.

    J. Zhu, Nanotechnology 18, 225702 (2007)

  19. 19.

    S.M. Anderson, B.S. Mendoza, Phys. Rev. B 94, 115314 (2016)

  20. 20.

    N.M. Jassim, Adv. Res. 7, 1–17 (2016)

  21. 21.

    R. J. Tran, K. L. Sly, J. C. Conboy, Annu. Rev. Anal. Chem. 10, 11.1-11.18 (2017)

  22. 22.

    K.D. Sattler, Handbook of Nanophysics: Nanoelectronics and Nanophotonics (CRC Press, Taylor & Francis, Boca Raton FL, 2011)

  23. 23.

    C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K.D. Dorkenoo, A. Fort, Appl. Phys. Lett. 90, 181105 (2007)

  24. 24.

    T.V. Shahbazyan, M.I. Stockman, Plasmonics: Theory and Applications (Springer, Dordrecht, 2013)

  25. 25.

    B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, H. Giessen, Nano. Lett. 15, 3917 (2015)

  26. 26.

    A. Capretti, E.F. Pecora, C. Forestiere, L.D. Negro, G. Miano, Phys. Rev. B 89, 125414 (2014)

  27. 27.

    L. ZhiBo, Z. XiaoLiang, Y. XiaoQing, C. YongSheng, T. JianGuo, Chin. Sci. Bull. 57, 2971 (2012)

  28. 28.

    Q. Bao, H. Y. Hoh, Y. Zhang (editors), Graphene Photonics, Optoelectronics, and Plasmonics (Pan Stanford Publishing Pte. Ltd, 2017)

  29. 29.

    D.A. Smirnova, I.V. Shadrivov, A.E. Miroshnichenko, A.I. Smirnov, Y.S. Kivshar, Phys. Rev. B 90, 035412 (2014)

  30. 30.

    M. Zdanowicz, S. Kujala, H. Husu, M. Kauranen, New. J. Physics 13, 023025 (2011)

  31. 31.

    N.C. Panoiu, W.E.I. Sha, D.Y. Lei, G.-C. Li, J. Opt. 20, 083001 (2018)

  32. 32.

    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nature Photon. 4, 611 (2010)

  33. 33.

    F.H.L. Koppens, D.E. Chang, F. Javier García de Abajo, Nano Lett. 11, 3370 (2011)

  34. 34.

    T. Low, P. Avouris, ACS Nano 8, 1086 (2014)

  35. 35.

    P. Kumar, A. Lakhtakia, P.K. Jain, JOSA B 36, F84 (2019)

  36. 36.

    J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, P.-F. Brevet, Phys. Rev. Lett 105, 077401 (2010)

  37. 37.

    J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, P.-F. Brevet, J. Phys. Chem. C 117, 1172 (2013)

  38. 38.

    B.C. Yildiz, M.E. Tasgin, M.K. Abak, S. Coskun, H.E. Unalan, A. Bek, J. Opt. 17, 125005 (2015)

  39. 39.

    S.A. Scherbak, A.A. Lipovskii, J. Phys. Chem. C 122, 15635 (2018)

  40. 40.

    K.N. Reddy, P.Y. Chen, A.I. Fernandez-Dominguez, Y. Sivan, Phys. Rev. B 99, 235429 (2019)

  41. 41.

    B.K. Juluri, Y.B. Zheng, D. Ahmed, L. Jensen, T.J. Huang, J. Phys. Chem. C 112, 7309 (2008)

  42. 42.

    N. Daneshfar, K. Bazyari, Appl. Phys. A 116, 611 (2014)

  43. 43.

    N. Daneshfar, H. Foroughi, Physica E 83, 268 (2016)

  44. 44.

    Y. Huang, A.E. Miroshnichenko, L. Gao, Sci. Rep. 6, 23354 (2016)

  45. 45.

    K. Zhang, L. Gao, Opt. Express 25, 13747 (2017)

  46. 46.

    T. Naseri, N. Daneshfar, M. Moradi-Dangi, F. Eynipour-Malaee, J. Theor. Appl. Phys 12, 257 (2018)

  47. 47.

    K. Tanabe, J. Phys. Chem. C 112, 15721 (2008)

  48. 48.

    J. Zhu, H. Liu, L.-Q. Huang, J. Appl. Phys 105, 114319 (2009)

  49. 49.

    J.W. Dadge, M. Islam, A.K. Dharmadhikari, S.R. Mahamuni, R.C. Aiyer, J. Phys.: Condens. Matter 18, 5405 (2006)

  50. 50.

    S.A. Maier, H.A. Atwater, J. Appl. Phys 98, 011101 (2005)

  51. 51.

    J. Butet, P.-F. Brevet, O.J.F. Martin, ACS Nano 9, 10545 (2015)

  52. 52.

    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser Photonics Rev. 4, 795 (2010)

  53. 53.

    P.C. Ray, Chem. Rev. 110, 5332 (2010)

  54. 54.

    A.N. Grigorenko, M. Polini, K.S. Novoselov, Nature Photonics 6, 749 (2012)

  55. 55.

    D. Wu, X.-D. Xu, X.-J. Liu, Solid State Commun. 148, 163 (2008)

Download references

Author information

Correspondence to Nader Daneshfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daneshfar, N., Noormohamadi, Z. Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium. Appl. Phys. A 126, 55 (2020). https://doi.org/10.1007/s00339-019-3228-y

Download citation