Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties

  • 62 Accesses


A series of Mg-doped NiFe2O4 (NMF) and Co-doped NiFe2O4 (NCF) nanoparticles were synthesized via citrate-gel method. The X-ray diffraction patterns of conventionally heated NMF and NCF nanoparticles confirmed the formation of single-phase cubic spinel structures. Further, the variation of structural parameters as a function of compositions was described. The morphology of NMF and NCF materials was investigated using scanning and transmission electron microscopes (SEM and TEM). In addition, the formation of tetrahedral (A-site) and octahedral (B-site) locations of NMF and NCF was obtained from the Fourier transform infrared spectra (FTIR). Furthermore, the room- and low-temperature magnetic properties were studied for NMF and NCF nanoparticles using magnetization versus magnetic field (M-H) loops and zero field cooled (ZFC) and field cooled (FC) curves, respectively. The results revealed that NMF and NCF nanoparticles exhibited superparamagnetic (SPM) nature at room temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. 1.

    N. Boda, K.C.B. Naidu, K.M. Batoo, G.H.R. Joice, J.L. Naik, D. Ravinder, Structural, morphological and electronic properties of cadmium cobalt ferrite nanoparticles. Biointerface Res Appl Chem 10, 4752–4763 (2020)

  2. 2.

    U. Naresh, R.J. Kumar, K.C.B. Naidu, Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8-xLaxFe2O4 (x = 0.2 − 0.6) nanoparticles. Ceram Int 45, 7515–7523 (2019)

  3. 3.

    K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and waste water treatment: a review. Sep Purif Technol 188, 399–422 (2017)

  4. 4.

    N. Boda, G. Boda, K.C.B. Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A.P. Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J Magn Magn Mater 473, 228–235 (2019)

  5. 5.

    K.C.B. Naidu, N.S. Kumar, G.R. Kumar et al., Temperature and frequency dependence of complex impedance parameters of microwave sintered NiMg ferrites. J Aust Ceram Soc 55, 541–548 (2019)

  6. 6.

    D. Sivakumar, K.C.B. Naidu, K.P. Nazeer, M.M. Rafi, G. Rameshkumar, B. Sathyaseelan, G. Killivalavan, A.A. Begam, Structural characterization and dielectric properties of superparamagnetic iron oxide nanoparticles. J Korean Ceram Soc 55, 230–238 (2018)

  7. 7.

    D.S. Kumar, K.C.B. Naidu, M.M. Rafi, K.P. Nazeer, A.A. Begam, G.R. Kumar, Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions. Mater Sci Pol 36, 123–133 (2018)

  8. 8.

    N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao, R.J. Kumar, G.R. Kumar, K.C.B. Naidu, Review on magnetocaloric effect and materials. J Supercond Nov Magn 31, 1971–1979 (2018)

  9. 9.

    T. Ramaprasad, R.J. Kumar, U. Naresh, M. Prakash, D. Kothandan, K.C.B. Naidu, Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Mater Res Express 5, 095025 (2018)

  10. 10.

    D. Kumar, D.B. Das, R. Gopalan, Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles. Mater Chem Phys 218, 70–76 (2018)

  11. 11.

    B. Aslibeiki, G. Varvaro, D. Peddis, P. Kameli, Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J Magn Magn Mater 422, 7–12 (2017)

  12. 12.

    N. Kaur, M. Kaur, Envisioning the composition effect on structural, magnetic, thermal and optical properties of mesoporous MgFe2O4-GO nanocomposites. Ceram Int 44, 4158–4168 (2018)

  13. 13.

    R. Lamouri, O. Mounkachi, E. Salmani, M. Hamedoun, A. Benyoussef, H. Ez-Zahraouy, Size effect on the magnetic properties of CoFe2O4 nanoparticles: a Monte Carlo study. Ceram Int (2019).

  14. 14.

    S. Munjal, N. Khare, B. Sivakumar, D.N. Sakthikumar, Citric acid coated CoFe2O4 nanoparticles transformed through rapid mechanochemical ligand exchange for efficient magnetic hyperthermia applications. J Magn Magn Mater 477, 388–395 (2019)

  15. 15.

    D. Hu, F. Zhao, Z. Zhang, L. Miao, R. Ma, W. Zhao et al., Synthesis and magnetic properties of monodisperse CoFe2O4 nanoparticles coated by SiO2. Ceram Int 44, 22462–22466 (2018)

  16. 16.

    S. Ramesh, D. Ravinder, K.C.B. Naidu, N.S. Kumar, K. Srinivas, D.B. Basha, B.C. Sekhar, A review on giant piezoelectric coefficient, materials and applications. Biointerface Res Appl Chem 9, 4205–4216 (2019)

  17. 17.

    N. Boda, K.C.B. Naidu, D.B. Basha, D. Ravinder, Structural and magnetic properties of CdCoFe2O4 nanoparticles. J. Supercond. Nov. Magn. 1–6 (2019).

  18. 18.

    K.C.B. Naidu, W. Madhuri, Microwave processed NiMg ferrites: studies on structural and magnetic properties. J Magn Magn Mater 420, 109–116 (2016)

  19. 19.

    K.C.B. Naidu, W. Madhuri, Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technology. IEEE Trans Magn 54, 2300808 (2018).

  20. 20.

    M. Hashim, K.C.B. Naidu, G.H.R. Joice, J.L. Naik, D. Ravinder, Superparamagnetic and photocatalytic activity of CoCe0.02Dy0.02Fe1.96O4 nanoparticles synthesized by citrate-gel autocombustion technique. Biointerface Res Appl Chem 9, 4164–4167 (2019)

  21. 21.

    C.H. Vinuthna, K.C.B. Naidu, C.C. Sekhar, D. Ravinder, Magnetic and antimicrobial properties of cobalt zinc ferrite nanoparticles synthesized by citrate-gel method. Int J Appl Ceram Technol 16, 1944 (2019).

  22. 22.

    S. Joshi, M. Kumar, Effect of Ni2+ substitution on structural, magnetic, dielectric and optical properties of mixed spinel CoFe2O4 nanoparticles. Ceram Int 42, 18154–18165 (2018)

  23. 23.

    G. Aravind, M. Raghasudha, D. Ravinder, M.M. Raja, S.S. Meena, P. Bhatt, M. Hashim, Study of structural and magnetic properties of Li–Ni nanoferrites synthesized by citrate-gel auto combustion method. Ceram Int 42, 2941–2950 (2016)

  24. 24.

    M. Hashim, M. Raghasudha, J. Shah, S.E. Shirsath, D. Ravinder, S. Kumar, S.S. Meena, P. Bhatt, R. Kumar, R.K. Kotnala, High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. J Phys Chem Solids 112, 29–36 (2018)

  25. 25.

    F.R. Mariosi, J. Venturini, A. da Cas Viegas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram Int (2019).

  26. 26.

    P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Math-Phys Kl 2, 98–100 (1918)

  27. 27.

    N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2 – 0.8) nanofibers. Mater Chem Phys 223, 241–248 (2019)

  28. 28.

    A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys Rev A 43, 3161 (1991)

  29. 29.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32, 751–767 (1976)

  30. 30.

    N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, G.R. Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2-zLazTiO3 (z = 0.05 – 0.2) nanoparticles. Ceram Int 44, 19408–19420 (2018)

  31. 31.

    N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2 – 0.8) nanoparticles: structural, morphological and dielectric properties. Ceram Int 44, 18189–18199 (2018)

  32. 32.

    D. Kothandan, R.J. Kumar, M. Prakash, K.C.B. Naidu, Structural, morphological and optical properties of Ba1-xCuxTiO3 (x = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method. Mater Chem Phys 215, 310–315 (2018)

  33. 33.

    R. Chantrell, N.S. Walmsley, J. Gore, M. Maylin, Theoretical studies of the field-cooled and zero-field cooled magnetization of interacting fine particles. J Appl Phys 85, 4340 (1999)

  34. 34.

    U. Naresh, R.J. Kumar, K.C.B. Naidu, Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater Chem Phys 236, 121807 (2019)

  35. 35.

    L.J. Berchmens, R.K. Selvan, P.N.S. Kumar, C.O. Augustin, Structural and electrical properties of Ni1-xMgxFe2O4 synthesized by citrate gel process. J Magn Magn Mater 279, 103–110 (2004)

  36. 36.

    S.R. Shinde, S.D. Kulkarni, A.G. Banpurkar, R. Nawathey-Dixit, S.K. Date, S.B. Ogale, Magnetic properties of nanosized powders of magnetic oxides synthesized by pulsed laser ablation. J Appl Phys 88, 1566 (2000)

  37. 37.

    M.A. Gabal, Y.M. AlAngari, H.M. Zaki, Structural, magnetic and electrical characterization of Mg–Ni nanocrystalline ferrites prepared through egg white precursor. J Magn Magn Mater 363, 6–15 (2014)

  38. 38.

    E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Phil Trans R Soc Lond A 240, 599 (1948)

  39. 39.

    C.P. Bean, J.D. Livingston, Superparamagnetism. J Appl Phys 30, 120 (1959)

  40. 40.

    N. Raghuram, T.S. Rao, K.C.B. Naidu, Magnetic properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0 − 0.8) nanomaterials. Appl Phys A 125, 839 (2019)

  41. 41.

    U. Naresh, R.J. Kumar, K.C.B. Naidu, Structural, morphological, optical, magnetic and ferroelectric properties of Ba0.2La0.8Fe2O4 nanofibers. Biointerface Res Appl Chem 9, 4243–4247 (2019)

  42. 42.

    D.R. Mane, D.D. Birajdar, S.E. Shirsath, R.A. Telugu, R.H. Kadam, Structural and magnetic characterizations of Mn-Ni-Zn ferrite nanoparticles. Phys Status Solidi A 207, 2355 (2010)

  43. 43.

    S. Singhal, K. Chanda, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180, 296 (2007)

  44. 44.

    C.M. Hurd, Varieties of magnetic order in solids. Contemp Phys 23, 469 (1982)

  45. 45.

    D.J. Craik, Magnetic oxides, part II (Wiley, London, 1975), p. 703

Download references


The authors (AG and DR) are very grateful to Prof. G. Prasad, Head, Department of Physics, Osmania University, Hyderabad, and also thankful to UPE-UGC-OU and DST-PURSE-OU. Authors K. M. Batoo, S. F. Adil and M. Khan are thankful to the Deanship of Scientific Research at King Saud University for its funding through the Research Group Project no. RG-1437-030.

Author information

Correspondence to D. Ravinder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaffoor, A., Naidu, K.C.B., Ravinder, D. et al. Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties. Appl. Phys. A 126, 39 (2020).

Download citation