Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Critical role of hydrogenation for creation of magnetic Cd–Cu co-incorporated TiO2 nanocrystallites

  • 46 Accesses


Nanocomposite of titanium dioxide (TiO2) incorporated with cadmium/copper (Cd/Cu) ions was fabricated by the co-decomposition of a mixture of Ti, Cd, and Cu metal complexes. The crystalline structures were studied by the X-ray diffraction (XRD), which confirmed the formation of anatase and brookite mixture. The optical properties of the synthesized samples were measured by diffuse reflection spectroscopy (DRS). The bandgap red shift of host TiO2 due to Cd ions incorporation and blue shift due to Cu ions incorporation was detected and measured. The hydrogenation of the powder samples increased the carrier concentration and, thus blueshifted the bandgap. With the hydrogenation, all the synthesized samples, including undoped TiO2-acquired room temperature ferromagnetic (RT-FM) properties, which was attributed to the generation of oxygen (O) vacancies. The O-vacancies were reduced by extra annealing in air at 600 °C that eliminated the RT-FM. The magnetic measurements on Anatase/Brookite TiO2 nanocomposite doped with 3wt% Cd show a creation of a magnetic property with magnetic saturation of 7.6 memu/g, which increased to 13.1memu/g with 1% Cu co-doping.

This is a preview of subscription content, log in to check access.

Fig. 2
Fig. 3
Fig. 4


  1. 1.

    J. Tian, H. Gao, H. Deng, L. Sun, H. Kong, P. Yang, J. Chu, Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (1 0 0) substrates sol–gel process. J. Alloys Compd. 581, 318–323 (2013)

  2. 2.

    M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, S. Ali, Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. Int. Nano Letters 8, 1–8 (2018)

  3. 3.

    J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei, W. Gao, Defective black TiO2 synthesized via anodization for visible-light photocatalysis. Appl. Mater. Inter. Appl. Mater. Inter. 6, 1385–1388 (2018)

  4. 4.

    D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370–3377 (2004)

  5. 5.

    H.-F. Zhuang, C.-J. Lin, Y.-K. Lai, L. Sun, J. Li, Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Environ. Sci. Technol. 41, 4735–4740 (2007)

  6. 6.

    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007)

  7. 7.

    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

  8. 8.

    A.C.M. Padilha, H. Raebiger, H. Rocha, G.M. Dalpian, Charge storage in oxygen deficient phases of TiO2: defect Physics without defects. Sci Rep 6(28871), 1–6 (2016)

  9. 9.

    Y. Xu, C. Zhang, L. Zhang, X. Zhang, H. Yao, J. Shi, Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance Energy. Environ. Sci. Technol. 9, 2410–2417 (2016)

  10. 10.

    A.H. Bouaine, G. Schmerber, D. Ihiawakrim, A. Derory, Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method. Mater. Sci. Eng. B 177, 1618–1622 (2012)

  11. 11.

    Y.L. Zhao, M. Motapothula, N.L. Yakovlev, Z.Q. Liu, S. Dhar, A. Rusydi, M.B.H. Breese, Q. Wang, T. Venkatesan, Appl. Phys. Lett. 101, 142105 (2012)

  12. 12.

    J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazardous Materials 299, 165–173 (2015)

  13. 13.

    K.-C. Zhang, Y.-F. Li, Y. Liu, Y. Zhu, Possible ferromagnetism in Cd-doped TiO2: A first-principles study. Phys B 422, 28–32 (2013)

  14. 14.

    S. Roy, H. Luitel, D. Sanyal, Origin of ferromagnetism in Cu doped rutile TiO2 -An ab-initio approach. Computational Condensed Matter 13, 127–130 (2017)

  15. 15.

    B. Qi, S. Olafsson, H.P. Gislason, Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: controversial origin and challenges. Prog Mater Sci 90, 45–74 (2017)

  16. 16.

    Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects. Appl. Phys. Lett. 92, 082508 (2008)

  17. 17.

    N.H. Hong, N. Poirot, J. Sakai, Ferromagnetism observed in pristine SnO2 thin films. Phys. Rev. B 77, 33205 (2008)

  18. 18.

    G. Bouzerar, T. Ziman, Model for vacancy-induced d0 ferromagnetism in oxide Compounds. Phys. Rev. Lett. 96, 207602 (2006)

  19. 19.

    G. Lusvardi, C. Barani, F. Giubertoni, G. Paganelli, Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials-MDPI 10(1208), 11 (2017)

  20. 20.

    S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chinese Sci. Bulletin 56, 1639–1657 (2011)

  21. 21.

    J.H. Leal, Y. Cantu, D.F. Gonzalez, J.G. Parsons, Brookite and anatase nanomaterial polymorphs of TiO2 synthesized from TiCl3. Inorg. Chem. Commun. 84, 28–32 (2017)

  22. 22.

    A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst. Catalysts 3, 36–73 (2013)

  23. 23.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32, 751 (1976)

  24. 24.

    C. Kittel, Introduction to solid state physics, (NY, John Wiley &Sons, 1996), p.425.

  25. 25.

    C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catal. Commun. 12, 826–829 (2011)

  26. 26.

    F. Bensouici, M. Bououdina, A.A. Dakhel, R. Tala-Ighil, M. Tounane, A. Iratni, T. Souier, S. Liu, W. Cai, Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 395, 110–116 (2017)

  27. 27.

    Pedroza-Herrera G, Medina-Ramirez IE, Lozano-Alvarez JA, Rodilc SE (2020) Evaluation of the photocatalytic activity of copper doped TiO2 nanoparticles for the purification and/or disinfection of industrial effluents. Catalysis Today 341: 37–48.

  28. 28.

    R. Lopez, R. Gomez, M.E. Llanos, Photophysical and photocatalytic properties of nanosized copper-doped titania sol-gel catalysts. Catal. Today 148, 103–108 (2010)

  29. 29.

    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Cryst. 32, 36–50 (1999)

  30. 30.

    A. Khorsand Zak, W. H. Abd Majid, M. E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13 (2011) 251–256.

  31. 31.

    S. C. Baker-Finch, K. R. McIntosh, Di Yan, K. C. Fong, Near-infrared free carrier absorption in heavily doped silicon. J. Appl. Phys. 116 (2014) 063106, pp. 1–12.

  32. 32.

    P. Margan, M. Haghighi, Hydrothermal-assisted sol–gel synthesis of Cd-doped TiO2 nanophotocatalyst for removal of acid orange from wastewater. J. Sol-Gel Sci. Technol. 81, 556–569 (2017)

  33. 33.

    Y. Li, Yi Guo, Y. Li, X. Zhou, Fabrication of Cd-doped TiO2 nanorod Arrays and photovoltaic property in perovskite solar cell. Electrochimica Acta 200 (2016) 29–36.

  34. 34.

    J. I. Pankove, “Optical processes in semiconductors”, 1975, P.36, Dover, NY.

  35. 35.

    W. Zhang, J.-R. Yin, X.-Q. Tang, P. Zhang, Y.-H. Ding, Density functional theory studies on the structural and physical properties of Cu-doped anatase TiO2 (101) surface. Physica E 85, 259–263 (2017)

  36. 36.

    M. Pozzo, D. Alfe, Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surface. Int. J. Hydrogen Energy 34, 1922–1930 (2009)

  37. 37.

    H. Wang, J. Wei, R. Xiong, J. Shi, Enhanced ferromagnetic properties of Fe+N codoped TiO2 anatase. J. Magn. Magn. Mater 324, 2057–2061 (2012)

  38. 38.

    A. Kumar, M.K. Kashyap, N. Sabharwal, S. Kumar, A. Kumar, P. Kumar, K. Asokan, Structural, optical and weak magnetic properties of Co and Mn codoped TiO2 nano particles. Solid State Sci 73, 19–26 (2017)

  39. 39.

    S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B 79(113201), 1–4 (2009)

  40. 40.

    J. Zhao, A. Zhao, W. Zhang, M. Yang, Z. Liu, Effect of annealing temperature on magnetic properties of pure TiO2 nanoparticles. Optoelectron Adv. Mat. 7, 393–396 (2013)

Download references

Author information

Correspondence to A. A. Dakhel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Critical role of hydrogenation for creation of magnetic Cd–Cu co-incorporated TiO2 nanocrystallites. Appl. Phys. A 126, 41 (2020). https://doi.org/10.1007/s00339-019-3222-4

Download citation