Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges


Carbon nanotubes-based adsorbents have attracted substantial interest as potential adsorbents for heavy metals removal. However many aspects such as the interaction between the modified carbon nanotubes (CNTs) and the heavy metal ions, quantitative effect of the functional groups and regeneration of CNTs-based adsorbents are not fully understood yet. A critical review was performed to compile an extensive profile from several studies of using pristine and modified CNTs for heavy metals removal. CNTs demonstrated a great potential. However surface modification of CNTs is necessary as pristine CNTs may be ineffective in arsenite [As (III)] or arsenate [As (V)] removal. Isotherms and kinetic models for the removal of heavy metals are discussed in details. A particular focus has been placed on better understanding the mechanism of heavy metals removal using CNTs-based adsorbents, affecting factors, maximum adsorption capacity and regeneration. The effect of adsorbent dose, pH, initial concentration, and contact time were addressed by several researchers, which specifies the consistency and performance of CNTs-based materials as potential adsorbents. To elucidate the mechanism of adsorption, FT-IR, XPS, SEM, TEM and EDX results have been reviewed and discussed. It is found that Langmuir, Freundlich and second order kinetic models are the most frequently used isotherm to describe heavy metals adsorption. CNTs-based adsorbent can be efficiently regenerated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6(3), 405–415 (2015)

  2. 2.

    M. Ajmal, R.K. Rao, R. Ahmad, J. Ahmad, Adsorption studies on citrus reticulate: removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79(1–2), 117–131 (2000)

  3. 3.

    M.A. Akl, A.M. Abou-Elanwar, Adsorption studies of Cd (II) from water by acid modified multi-walled carbon nanotubes. J. Nano-med. Nanotechnol. 6(6), 327–336 (2015)

  4. 4.

    I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology. Nat. Protoc. 1(6), 2661–2667 (2007)

  5. 5.

    M. Alimohammady, M. Jahangiri, F. Kiani, H. Tahermansouri, Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg(II) and As (III) ions from aqueous solution. Res. Chem. Intermed. 44(1), 69–92 (2018)

  6. 6.

    N. Asasian, T. Kaghazchi, Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase. Int. J. Environ. Sci. Technol. 12(8), 2511–2522 (2015)

  7. 7.

    M. Aslam, S. Rais, M. Alam, A. Pugazhendi, Adsorption of Hg(II) from aqueous solution using Adulsa (Justicia adhatoda) leaves powder: kinetic and equilibrium studies. J. Chem. 2013, 174807 (2013).

  8. 8.

    M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl. 2010, 603978 (2010).

  9. 9.

    ATSDR, Priority list of hazardous substances (2015)

  10. 10.

    A.A. Attia, S.A. Khedr, S.A. Elkholy, Adsorption of chromium ion (VI) by acid activated carbon. Braz. J. Chem. Eng. 27(1), 183–193 (2010)

  11. 11.

    A. Ayar, A.A. Gürten, Determination of the rate control step of purin and pyrimidine bases adsorption on cobalt (II)–CDAE-sporopollenin. Colloids Surf A Physicochem Eng Asp 229(1–3), 149–155 (2003)

  12. 12.

    N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 3039817 (2017).

  13. 13.

    M.R. Babaa, N. Dupont-Pavlovsky, E. McRae, K. Masenelli-Varlot, Physical adsorption of carbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes. Carbon 42(8–9), 1549–1554 (2004)

  14. 14.

    W. Bai, A. Raghavendra, R. Podila, J. Brown, Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation. Int. J. Nanomed. 2(11), 4357–4371 (2016)

  15. 15.

    N.M. Bandaru, N. Reta, H. Dalal, A.V. Ellis, J. Shapter, N.H. Voelcker, Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J. Hazard. Mater. 261, 534–541 (2013)

  16. 16.

    A.A. Basheer, New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

  17. 17.

    M. Bassyouni, M.H. Abdel-Aziz, M.S. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 73, 19–46 (2019)

  18. 18.

    Ş.S. Bayazit, İ. İnci, Adsorption of Cu (II) ions from water by carbon nanotubes oxidized with UV-light and ultrasonication. J. Mol. Liq. 199, 559–564 (2014)

  19. 19.

    Ş.S. Bayazit, Ö. Kerkez, Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chem. Eng. Res. Des. 92(11), 2725–2733 (2014)

  20. 20.

    M. Bhaumik, A. Maity, V.V. Srinivasui, M.S. Onyago, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nano composite. J. Hazard. Mater. 190(1–3), 381–390 (2011)

  21. 21.

    A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalized carbon nanotubes. Chem. Commun. 5, 571–577 (2005)

  22. 22.

    W. Bleam, Surface chemistry and adsorption, in Soil and environmental chemistry, 2nd edn., ed. by W. Bleam (Academic Press, Cambridge, 2017), pp. 385–443

  23. 23.

    E. Bulut, M. Özacar, İ.A. Şengil, Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater. 115(3), 234–246 (2008)

  24. 24.

    A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

  25. 25.

    M.M. Calbi, M.W. Cole, S.M. Gatica, G. Stan, M.J. Bojan, Condensed phases of gases inside nanotube bundles. Rev. Mod. Phys. 73(4), 857–865 (2001)

  26. 26.

    Q. Chang, W. Lin, W.C. Ying, Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. J. Hazard. Mater. 184(1–3), 515–522 (2010)

  27. 27.

    H.P. Chao, C.C. Chang, Adsorption of copper (II), cadmium (II), nickel (II) and lead (II) from aqueous solution using bio sorbents. Adsorption 18(5–6), 395–401 (2012)

  28. 28.

    B. Chen, Z. Zhu, J. Ma, Y. Qiu, J. Chen, Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J. Mater. Chem. 1(37), 11355–11367 (2013)

  29. 29.

    C. Chen, X. Wang, Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45(26), 9144–9149 (2006)

  30. 30.

    C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J. Hazard. Mater. 164(2–3), 923–928 (2009)

  31. 31.

    H. Chen, J. Li, D. Shao, X. Ren, X. Wang, Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chem. Eng. J. 210, 475–481 (2012)

  32. 32.

    P.H. Chen, C.F. Hsu, D.D. Tsai, Y.M. Lu, W.J. Huang, Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Environ. Technol. 35(15), 1935–1944 (2014)

  33. 33.

    R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, A. Mohammad, Preparation and characterization of magnetic Fe3O4/CNT nano particles by RPO method to enhance the efficient removal of Cr(VI). Environ. Sci. Pollut. Res. 20(10), 7175–7185 (2013)

  34. 34.

    W. Chen, R. Parette, J. Zou, F.S. Cannon, B.A. Dempsey, Arsenic removal by iron-modified activated carbon. Water Res. 41(9), 1851–1858 (2007)

  35. 35.

    W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 98(15), 2897–2904 (2007)

  36. 36.

    S.R. Chowdhury, E.K. Yanful, Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J 25(3), 429–437 (2011)

  37. 37.

    H. Cid, C. Ortiz, J. Pizarro, D. Barros, X. Castillo, L. Giraldo, J.C. Moreno-Piraján, Characterization of copper (II) biosorption by brown algae Durvillaea antarctica dead biomass. Adsorption 21(8), 645–658 (2015)

  38. 38.

    J.F. Colomer, P. Piedigrosso, A. Fonseca, J.B. Nagy, Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth. Met. 103(1–3), 2482–2483 (1999)

  39. 39.

    G. Crini, Non-conventional low-cost adsorbents for dye removal. Bioresour. Technol. 97(9), 1061–1085 (2006)

  40. 40.

    A. Dabrowski, Adsorptions from theory to practice. Adv. Colloid Interface Sci. 93(1–3), 135–224 (2001)

  41. 41.

    A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 (2012)

  42. 42.

    A.B. Dalton, S. Collins, J. Razal, E. Munoz, V.H. Ebron, B.G. Kim, R.H. Baughman, Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem. 14(1), 1–3 (2004)

  43. 43.

    R. Das, S.B.A. Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)

  44. 44.

    R. Das, B.F. Leo, F. Murphy, The toxic truth about carbon nanotubes in water purification: a perspective view. Nanoscale Res. Lett. 13(1), 183 (2018)

  45. 45.

    A. Dawlet, D. Talip, H.Y. Mi, Removal of mercury from aqueous solution using sheep bone charcoal. Procedia Environ. Sci. 18, 800–808 (2013)

  46. 46.

    M. Dehaghi, Removal of lead ions from aqueous solution using multi-walled carbon nanotubes: the effect of functionalization. J. Appl. Environ. Biol. Sci. 4(2), 316–326 (2014)

  47. 47.

    E. Demirbaş, Adsorption of cobalt (II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorpt. Sci. Technol. 21(10), 951–963 (2003)

  48. 48.

    A. Denizli, E. Büyüktuncel, A. Tuncel, S. Bektas, Ö. Genç, Batch removal of lead ions from aquatic solutions by polyethyleneglycol-methacrylate gel beads carrying cibacron blue F3GA. Environ. Technol. 21(6), 609–614 (2000)

  49. 49.

    Z. Di, Y. Li, Z. Luan, J. Liang, Adsorption of chromium(VI) ions from water by carbon nanotubes. Adsorpt. Sci. Technol. 22(6), 467–474 (2004)

  50. 50.

    T.N. Diva, K. Zare, F. Taleshi, M. Yousefi, Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. J. Nanostruct. Chem. 7(3), 273–281 (2017)

  51. 51.

    H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, A. Bianco, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6(7), 1522–1528 (2006)

  52. 52.

    Y. Elhenawy, N.A. Elminshawy, M. Bassyouni, A.A. Alanezi, E. Drioli, Experimental and theoretical investigation of a new air gap membrane distillation module with a corrugated feed channel. J Membr Sci 594, 117461 (2020)

  53. 53.

    A. Elrasheedy, N. Nady, M. Bassyouni, A. El-Shazly, Metal organic framework based polymer mixed matrix membranes: review on applications in water purification. Membranes 9(7), 88 (2019)

  54. 54.

    M. El-Sadaawy, O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alex. Eng. J. 53(2), 399–408 (2014)

  55. 55.

    K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 18(3), 386–395 (2011)

  56. 56.

    Environmental Protection Agency (EPA), U.S. (2009). National Primary Drinking Water Regulations (EPA 816-F-09-004)

  57. 57.

    EPA, monitored natural attenuation of inorganic contaminants in ground water assessment for non-radionuclides including Arsenic, Cadmium, Chromuim, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium, Volume II (2007)

  58. 58.

    A. Erto, F. Di Natale, D. Musmarra, A. Lancia, Modeling of single and competitive adsorption of cadmium and zinc onto activated carbon. Adsorption 21(8), 611–621 (2015)

  59. 59.

    A.A. Farghali, M. Bahgat, A.E. Allah, M.H. Khedr, Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ. J. Basic Appl. Sci. 2(2), 61–71 (2013)

  60. 60.

    A.A. Farghali, H.A. Tawab, S.A. Moaty, R. Khaled, Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J. Nanostruct. Chem. 7(2), 101–111 (2017)

  61. 61.

    C. Faur-Brasquet, K. Kadirvelu, P. Le Cloirec, Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon 40(13), 2387–2392 (2002)

  62. 62.

    S.S. Fiyadh, M.A. AlSaadi, W.Z.B. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S.B. Mohd, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 230, 783–793 (2019)

  63. 63.

    K.Y. Foo, B.H. Hameed, Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 159(2), 130–314 (2009)

  64. 64.

    F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Mang. 92(3), 407–418 (2011)

  65. 65.

    Z. Gao, T.J. Bandosz, Z. Zhao, M. Han, J. Qiu, Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167(1–3), 357–365 (2009)

  66. 66.

    Y. Ge, Z. Li, D. Xiao, P. Xiong, N. Ye, Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. J. Ind. Eng. Chem. 20(4), 1765–1771 (2014)

  67. 67.

    F. Gimbert, N. Morin-Crini, F. Renault, P.M. Badot, G. Crini, Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J. Hazard. Mater. 157(1), 34–46 (2008)

  68. 68.

    J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J. Hazard. Mater. 125(1–3), 211–220 (2005)

  69. 69.

    P.R. Grossl, M. Eick, D.L. Sparks, S. Goldberg, C.C. Ainsworth, Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31(2), 321–326 (1997)

  70. 70.

    A. Gupta, S.R. Vidyarthi, N. Sankararamakrishnan, Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J. Hazard. Mater. 274, 132–144 (2014)

  71. 71.

    K. Gupta, S. Saha, U.C. Ghosh, Synthesis and characterization of nanostructure hydrous iron-titanium binary mixed oxide for arsenic sorption. J. Nanopart. Res. 10(8), 1361–1368 (2008)

  72. 72.

    V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185(1), 17–23 (2011)

  73. 73.

    V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ. Sci. Pollut. Res. 20(5), 2828–2843 (2013)

  74. 74.

    M. Hadadian, E.K. Goharshadi, M.M. Fard, H. Ahmadzadeh, Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions. Appl. Phys. A 124(3), 239 (2018)

  75. 75.

    S. Halnor, M. Farooqui, M. Ubale, Removal of copper (II) from aqueous solution and waste water by Prosopis Juliflora leaf powder by adsorption. IJAIEM 2(3), 125–131 (2013)

  76. 76.

    Y. Hao, F. Yu, R. Lv, C. Ma, Z. Zhang, Y. Rui, B. Xing, Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C:N ratio and plant hormones concentrations. PLoS One 11(6), e0157264 (2016)

  77. 77.

    P. Hao, X. Ma, J. Xie, F. Lei, L. Li, W. Zhu, B. Tang, Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors. Sci. China Chem. 61, 797–805 (2018)

  78. 78.

    H. Hasar, Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97(1–3), 49–57 (2003)

  79. 79.

    S. Hashemian, H. Saffari, S. Ragabion, Adsorption of cobalt (II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water Air Soil Pollut. 226(1), 2212 (2015)

  80. 80.

    K. Hernadi, A. Fonseca, J.B. Nagy, D. Bemaerts, A. Fudala, A.A. Lucas, Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17(5), 416–423 (1996)

  81. 81.

    Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76(4), 822–827 (1998)

  82. 82.

    Y.S. Ho, C.T. Huang, H.W. Huang, Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem. 37(12), 1421–1430 (2002)

  83. 83.

    H. Hossini, A. Rezaee, S.O. Rastegar, S. Hashemi, M. Safari, Equilibrium and kinetic studies of chromium adsorption from wastewater by functionalized multi-wall carbon nanotubes. React. Kinet. Mech. Catal. 112(2), 371–382 (2014)

  84. 84.

    J. Hu, S.W. Wang, D.D. Shao, Y.H. Dong, J.X. Li, X.K. Wang, Adsorption and reduction of chromium (VI) from aqueous solution by multi-walled carbon nanotubes. Open Environ. Pollut. Toxicol. J. 1, 66–73 (2009)

  85. 85.

    Z. Huang, X. Wang, D. Yang, Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 8(3), 226–232 (2015)

  86. 86.

    H. Igarashi, H. Murakami, Y. Murakami, S. Maruyama, N. Nakashima, Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol. Chem. Phys. Lett. 392(4–6), 529–532 (2004)

  87. 87.

    J.C. Igwe, A.A. Abia, C.A. Ibeh, Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int. J. Environ. Sci. Technol. 5(1), 83–92 (2008)

  88. 88.

    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

  89. 89.

    N.B. Issa, V.N. Rajaković-Ognjanović, B.M. Jovanović, L.V. Rajaković, Determination of inorganic arsenic species in natural waters—benefits of separation and preconcentration on ion exchange and hybrid resins. Anal. Chim. Acta 673(2), 185–193 (2010)

  90. 90.

    M.E. Itkis, D.E. Perea, R. Jung, S. Niyogi, R.C. Haddon, Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. Chem. Soc. 127(10), 3439–3448 (2005)

  91. 91.

    K.A. Jensen, J. Bøgelund, P. Jackson, N.R. Jacobsen, R. Birkedal, P.A. Clausen, U.B. Vogel (2015).Carbon nanotubes—types, products, market, and provisional assessment of the associated risks to man and the environment. Environmental project No. 1805

  92. 92.

    G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, X. Guo, Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39(5), 1378–1383 (2005)

  93. 93.

    P.K. Jjemba, Interaction of metals and metalloids with microorganisms in the environment, in Environmental microbiology—principles and applications, ed. by K.J. Patrick (Science Publications, Enfield, 2004), pp. 257–270

  94. 94.

    L. Joncourt, M. Mermuox, P. Touzain, L. Bonnetain, D. Dumas, B. Allard, Sodium reactivity with carbons. J. Phys. Chem. Solids 57(6–8), 877–882 (1996)

  95. 95.

    L. Jossens, J.M. Prausnitz, W. Fritz, E.U. Schlünder, A.L. Myers, Thermodynamics of multi-solute adsorption from dilute aqueous solutions. Chem. Eng. Sci. 33(8), 1097–1106 (1978)

  96. 96.

    N.A. Kabbashi, M.A. Atieh, A. Al-Mamun, M.E. Mirghami, M.D.Z. Alam, N. Yahya, Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21(4), 539–544 (2009)

  97. 97.

    N.A. Kabbashi, M.I.A. Karim, M.E. Saeed, K.H.K. Yaacob, Application of carbon nanotubes for removal of copper ion from synthetic water. In; 4th Kuala Lumpur international conference on biomedical engineering 2008 (pp. 77–81). Springer, Berlin, Heidelberg (2008)

  98. 98.

    K. Kadirvelu, P. Kanmani, P. Senthilkumar, V. Subburam, Separation of mercury (II)from aqueous solution by adsorption onto an activated carbon prepared from Eichhornia crassipes. Adsorpt. Sci. Technol. 22(3), 207–222 (2004)

  99. 99.

    K. Kadirvelu, P. Senthilkumar, K. Thamaraiselvi, V. Subburam, Activated carbon prepared from biomass as adsorbent: elimination of Ni- (II) from aqueous solution. Bioresour. Technol. 81(1), 87–90 (2002)

  100. 100.

    V.E. Kagan, N.V. Konduru, W. Feng, B.L. Allen, J. Conroy, Y. Volkov, Y.Y. Tyurina, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5(5), 354 (2010)

  101. 101.

    M.I. Kandah, J.L. Meunier, Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1–2), 283–288 (2007)

  102. 102.

    A. Kaushala, S.K. Singhb, Adsorption of Zn (II) from aqueous solution on mango leaves powder. Int. J. 4(1), 301–304 (2016)

  103. 103.

    M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A.S. Biris, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10), 3221–3227 (2009)

  104. 104.

    D.C.K. Ko, J.F. Porter, G. McKay, Effect of concentration-dependent surface diffusivity on simulation of fixed bed sorption systems. Chem. Eng. Res. Des. 81(10), 1323–1332 (2003)

  105. 105.

    W. Konicki, I. Pełech, E. Mijowska, Removal of Ni2+ from aqueous solutions by adsorption onto magnetic multiwalled carbon nanotube nanocomposite. Pol. J. Chem. Technol. 16(2), 87–94 (2014)

  106. 106.

    S.A. Kosa, G. Al Zhrani, M. Abdel salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181–182, 159–168 (2012)

  107. 107.

    A. Kraus, K. Jainae, F. Unob, N. Sukpirom, Synthesis of MPTS- modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au(III). J. Colloid Interface Sci. 338(2), 359–365 (2009)

  108. 108.

    Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1), 41–51 (2007)

  109. 109.

    I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour. Technol. 99(3), 492–501 (2008)

  110. 110.

    P.S. Kumar, Adsorption of Zn(II) ions from aqueous environment by surface modified strychnos Potatorum seeds, a low cost adsorbent. Pol. J. of Chem. Tech. 15(3), 35–41 (2013)

  111. 111.

    M.H. Lahiani, E. Dervishi, J. Chen, Z. Nima, A. Gaume, A.S. Biris, M.V. Khodakovskaya, Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces. 5(16), 7965–7973 (2013)

  112. 112.

    D. Lakherwal, V.K. Rattan, H.P. Singh, Studies on adsorption of nickel by activated carbon in a liquid fluidised bed reactor. Can. Chem. Trans. 4(1), 121–132 (2016)

  113. 113.

    C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(1), 126–134 (2004)

  114. 114.

    R. Leyva-Ramos, J.L. Bernal, B.J. Mendoza, R.L. Fuentes, C.R. Guerrero, Adsorption of zinc(II) from an aqueous solution onto activated carbon. J. Hazard. Mater. 90(1), 27–38 (2002)

  115. 115.

    R. Leyva-Ramos, M.S. Berber-Mendoza, J. Salazar-Rabago, R.M. Guerrero-Coronado, J. Mendoza-Barron, Adsorption of lead (II) from aqueous solution onto several types of activated carbon fibers. Adsorption 17(3), 515–526 (2011)

  116. 116.

    J. Li, C. Chen, S. Zhang, X. Wang, Surface functional groups and defects on carbo nanotubes affect adsorption-desorption hysteresis of metal cations and oxoanions in water. Environ. Sci. Nano 1(5), 488–495 (2014)

  117. 117.

    Y. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, B. Wei, Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3–4), 263–266 (2002)

  118. 118.

    Y. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14), 2787–2792.40 (2003)

  119. 119.

    Y. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41(5), 1057–1062 (2003)

  120. 120.

    X.P. Liao, W. Tang, R.Q. Zhou, B. Shi, Adsorption of metal anions of vanadium (V) and chromium (VI) on Zr (IV)-impregnated collagen fiber. Adsorption 14(1), 55–64 (2008)

  121. 121.

    H.K. Lim, T.T. Teng, M.H. Ibrahim, A. Ahmad, H.T. Chee, Adsorption and removal of zinc (II) from aqueous solution using powdered fish bones. APCBEE Procedia 1, 96–102 (2012)

  122. 122.

    C. Liné, C. Larue, E. Flahaut, Carbon nanotubes: impacts and behaviour in the terrestrial ecosystem-A review. Carbon 123, 767–785 (2017)

  123. 123.

    H. Liu, S. Feng, N. Zhang, X. Du, Y. Liu, Removal of Cu (II) ions from aqueous solution by activated carbon impregnated with humic acid. Front. Environ. Sci. Eng. 8(3), 329–336 (2014)

  124. 124.

    Q. Liu, B. Yang, L. Zhang, R. Huang, Simultaneous adsorption of phenol and Cu2+ from aqueous solution by activated carbon/chitosan composite. Korean J. Chem. Eng. 31(9), 1608–1615 (2014)

  125. 125.

    S. Liu, L. Mei, X. Liang, L. Liao, G. Lv, S. Ma, K. Xi, Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Appl. Mater. Interfaces. 10(35), 29467–29475 (2018)

  126. 126.

    Z. Liu, L. Chen, Z. Zhang, Y. Li, Y. Dong, Y. Sun, Synthesis of multi-walled carbon nanotube hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. J. Mol. Liq. 179, 46–53 (2013)

  127. 127.

    R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for nitrogen oxides. Ind. Eng. Chem. Res. 40(20), 4288–4291 (2001)

  128. 128.

    C. Lu, H. Chiu, Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61(4), 1138–1145 (2005)

  129. 129.

    C. Lu, H. Chiu, C. Liu, Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45(8), 2850–2855 (2006)

  130. 130.

    C. Lu, C. Liu, G.P. Rao, Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mat. 151(1), 239–246 (2008)

  131. 131.

    C. Lu, H. Chiu, Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J. 139(3), 462–468 (2008)

  132. 132.

    T.D. Luckey, B. Venugopal, Metal toxicity in mammals. 2, Chemical toxicity of metals and metalloids. Plenum (1978)

  133. 133.

    X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85(7), 1204–1209 (2011)

  134. 134.

    I. Lynch, K.A. Dawson, Protein-nanoparticle interactions. Nano today 3(1–2), 40–47 (2008)

  135. 135.

    F.M. Machado, C.P. Bergmann, T.H. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 192(3), 1122–1131 (2011)

  136. 136.

    F.M. Machado, S.B. Fagan, I.Z. da Silva, M.J. de Andrade, Carbon Nano adsorbents, in Carbon nanomaterials as adsorbents for environmental and biological applications, ed. by C. Bergmann, F. Machado (Carbon Nanostruct. Springer, Cham, 2015), pp. 11–32

  137. 137.

    S. Mageswari, S. Kalaiselvan, P.S. Shabudeen, N. Sivakumar, S. Karthikeyan, Optimization of growth temperature of multi-walled carbon nanotubes fabricated by chemical vapour deposition and their application for arsenic removal. Mater Sci-Poland 32(4), 709–718 (2014)

  138. 138.

    R. Mahalakshmi, L. Ravikumar, K. Rathina, a study on the removal of mercury (ii) ions from aqueous solution by chemically modified cellulose green adsorbent: kinetic and equilibrium studies. Rasayan J. Chem. 10(1), 286–297 (2017)

  139. 139.

    P. Mahalingam, B. Parasuram, T. Maiyalagan, S. Sundaram, Chemical methods for purification of carbon nanotubes-A review. J. Environ. Nanotechnol. 1(1), 53–61 (2012)

  140. 140.

    A. Maiti, J.K. Basu, S. De, Experimental and kinetic modeling of As (V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: effect of phosphate, silicate and carbonate ions. Chem. Eng. J. 191, 1–12 (2010)

  141. 141.

    S.K. Maji, Y.H. Kao, C.W. Liu, Arsenic removal from real arsenic-bearing groundwater by adsorption on iron-oxide-coated natural rock (IOCNR). Desalination 280(1–3), 72–79 (2011)

  142. 142.

    B.A. Manning, S. Fendorf, S. Goldberg, Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32(16), 2383–2388 (1998)

  143. 143.

    C.A. Martinson, K.J. Reddy, Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 336(2), 406–411 (2009)

  144. 144.

    J. Mendoza-Barrón, A. Jacobo-Azuara, R. Leyva-Ramos, M.S. Berber-Mendoza, R.M. Guerrero-Coronado, L. Fuentes-Rubio, J.M. Martínez-Rosales, Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite. Adsorption 17(3), 489–496 (2011)

  145. 145.

    Y.S. Minaberry, G.J. Gordillo, The influence of organic ligands on the adsorption of cadmium by suspended matter in natural waters studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrochemical methods. Chemosphere 78(11), 1356–1361 (2010)

  146. 146.

    P. Miralles, E. Johnson, T.L. Church, A.T. Harris, Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J. R. Soc. Interface 9(77), 3514 (2012)

  147. 147.

    A.K. Mishra, S. Ramaprabhu, Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J. Phys. Chem. 114(6), 2583–2590 (2010)

  148. 148.

    I. Mobasherpour, E. Salahi, M. Ebrahimi, Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Res. Chem. Intermed. 38(9), 2205–2222 (2012)

  149. 149.

    I. Mobasherpour, E. Salahi, M. Ebrahimi, Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto multi-walled carbon nanotubes. J. Saudi Chem. Soc. 18(6), 792–801 (2014)

  150. 150.

    D. Mohan, C.U. Pitman Jr., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137(2), 762–811 (2006)

  151. 151.

    S. Mohanapriya, V. Lakshminarayanan, Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). Talanta 71(1), 493–497 (2007)

  152. 152.

    A.A. Moosa, A.M. Ridha, N.A. Hussien, Removal of zinc ions from aqueous solution by bioadsorbents and CNTs. Am. J. Mater. Sci. 6(4), 105–114 (2016)

  153. 153.

    J.J. Moreno-Barbosa, C. López-Velandia, A. del Pilar Maldonado, L. Giraldo, J.C. Moreno-Piraján, Removal of lead (II) and zinc (II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. Adsorption 19(2–4), 675–685 (2013)

  154. 154.

    N.M. Mubarak, R.F. Alicia, E.C. Abdullah, J.N. Sahu, A.A. Haslija, J. Tan, Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J. Environ. Chem. Eng. 1(3), 486–495 (2013)

  155. 155.

    N.M. Mubarak, R.K. Thines, N.R. Sajuni, E.C. Abdullah, J.N. Sahu, P. Ganesan, N.S. Jayakumar, Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes. Korean J. Chem. Eng. 31(9), 1582–1591 (2014)

  156. 156.

    N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn (II) from wastewater. Res. Chem. Intermed. 42(4), 3257–3281 (2016)

  157. 157.

    T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd (II) and Pb(II) from aqueous solutions on activated alumina. J. Colloid Interface Sci. 333(1), 14–26 (2009)

  158. 158.

    S. Nethaji, A. Sivasamy, A.B. Mandal, Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int. J. Environ. Sci. Technol. 10(2), 231–242 (2013)

  159. 159.

    W.W. Ngah, A. Kamari, S. Fatinathan, P.W. Ng, Adsorption of chromium from aqueous solution using chitosan beads. Adsorption 12(4), 249–257 (2006)

  160. 160.

    A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, A. Nilsson, Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95(22), 225507 (2005)

  161. 161.

    S.A. Ntim, S. Mitra, Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. J. Chem. Eng. 56(5), 2077–2083 (2011)

  162. 162.

    S.A. Ntim, S. Mitra, Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J. Colloid Interface Sci. 375(1), 154–159 (2012)

  163. 163.

    N.E. Okoronkwo, J.C. Igwe, I.J. Okoronkwo, Environmental impacts of mercury and its detoxification from aqueous solutions. Afr. J. Biotechnol. 6(4), 335–340 (2007)

  164. 164.

    J.D. Orbell, L. Godhino, S.W. Bigger, T.M. Nguyen, L.N. Ngeh, Oil spill remediation using magnetic particles: an experiment in environmental technology. J. Chem. Educ. 74(12), 1446 (1997)

  165. 165.

    M.Z. Othman, F.A. Roddick, R. Snow, Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents. Water Res. 35(12), 2943–2949 (2001)

  166. 166.

    J. Pattanayak, K. Mondel, S. Mathew, S.B. Lalvani, A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38(4), 589–596 (2000)

  167. 167.

    X. Peng, Z. Luan, J. Ding, Z. Di, Y. Li, B. Tian, Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 59(4), 399–403 (2005)

  168. 168.

    N.A. Pérez, G. Rincón, L.A. Delgado, N. González, Use of biopolymers for the removal of heavy metals produced by the oil industry—a feasibility study. Adsorption 12(4), 279–286 (2006)

  169. 169.

    N.V. Perez-Aguilar, E. Munoz-Sandoval, P.E. Diaz-Flores, J.R. Rangel-Mendez, Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics. J. Nanopart. Res. 12(2), 467–480 (2010)

  170. 170.

    K. Pillay, E.M. Cukrowska, N.G. Coville, Improved uptake of mercury by sulphur-containing carbon Nanotubes. Microchem. J. 108, 124–130 (2013)

  171. 171.

    S.R. Popuri, R. Frederick, C.Y. Chang, S.S. Fang, C.C. Wang, L.C. Lee, Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin. Water Treat. 52(4–6), 691–701 (2014)

  172. 172.

    R. Prabakaran, S. Arivoli, Removal of cobalt (II) from aqueous solutions by adsorption on low cost activated carbon. Int. J. Sci. Eng. Technol. Res. 2(2), 271 (2013)

  173. 173.

    J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis. J. Mater. Chem. 21(40), 15872–15884 (2011)

  174. 174.

    K. Pyrzynska, Application of carbon sorbents for the concentration and separation of metal ions. Jpn. Soc. Anal. Chem. 23(6), 631–637 (2007)

  175. 175.

    N.D.V. Quyen, T.N. Tuyen, D.Q. Khieu, H. van Minh Hai, D.X. Tin, P.T.N. Lan, I. Kiyoshi, Lead ions removal from aqueous solution using modified carbon nanotubes. Bull. Mater. Sci. 41(1), 6 (2018)

  176. 176.

    C. Raji, K.P. Shubha, T.S. Anirudhan, Use of chemically modified sawdust in the removal of Pb(II) ions from aqueous media. Indian J. Environ. Health 39(3), 230–238 (1997)

  177. 177.

    D.V. Ramana, J.S. Yu, K. Seshaiah, Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (II) and Cd (II) from water: surface, kinetic, equilibrium, and thermal adsorption properties. Chem. Eng. J. 223, 806–815 (2013)

  178. 178.

    D.V. Ramana, Y.Y. Kim, K. Min, Efficient removal of Ni (II) by multi step treated carbon nanotubes from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Indian J. Adv. Chem. Sci. 3, 113–121 (2014)

  179. 179.

    M.M. Rao, D.K. Reddy, P. Venkateswarlu, K. Seshaiah, Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J. Environ. Manag. 90(1), 634–643 (2009)

  180. 180.

    L. Ray, S. Paul, D. Bera, P. Chattopadhyay, Bioaccumulation of Pb(II) from aqueous solutions by Bacillus cereus M1 16. J. Hazard. Subst. Res. 5(1), 1 (2006)

  181. 181.

    E. Raymundo-Pinero, T. Cacciaguerra, P. Simon, F. Béguin, A single step process for the simultaneous purification and opening of multi walled carbon nanotubes. Chem. Phys. Lett. 412(1–3), 184–189 (2005)

  182. 182.

    O.J.D.L. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024 (1959)

  183. 183.

    X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2–3), 395–410 (2011)

  184. 184.

    X. Ren, J. Li, X. Tan, X. Wang, Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. 42(15), 5266–5274 (2013)

  185. 185.

    S. Rengaraj, Y. Jei-Won, K. Younghun, K. Won-Ho, Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm and error analysis. Ind. Eng. Chem. Res. 46(9), 2834–2842 (2007)

  186. 186.

    P. Rodríguez-Estupiñán, M.B. Barranco, J.C. Moreno-Piraján, L. Giraldo, A comparison of the energetic interactions in the adsorption of Co (II) from aqueous solution on SBA-15 and chemically modified activated carbons. Adsorption 21(8), 623–632 (2015)

  187. 187.

    E. Rydman, J. Catalán, P. Nymark, J. Palomäki, H. Norppa, H. Alenius, H. Järventaus, Evaluation of the health effects of carbon nanotubes (2013)

  188. 188.

    B. Sadeghalvad, A.R. Azadmehr, H. Motevalian, Statistical design and kinetic and thermodynamic studies of Ni (II) adsorption on bentonite. J. Central South Univ. 24(7), 1529–1536 (2017)

  189. 189.

    D. Saha, H.A. Grappe, Adsorption properties of activated carbon fibers, in Woodhead publishing series in textiles, activated carbon fiber and textiles, ed. by J.Y. Chen (Woodhead Publishing, Sawston, 2017), pp. 143–165

  190. 190.

    E.A. Salam, K.A. El-Nour, A.A. Awad, A.S. Orabi, Carbon nanotubes modified with 5, 7-dinitro-8-quinolinol as potentially applicable tool for efficient removal of industrial wastewater pollutants. Arab. J. Chem. (2017).

  191. 191.

    T.A. Saleh, V.K. Gupta, Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228 (2012)

  192. 192.

    T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. 22(21), 16721–16731 (2015)

  193. 193.

    E. Salernitano, L. Giorgi, T. Dikonimos Makris, R. Giorgi, N. Lisi, V. Contini, M. Falconieri, Purification of MWCNTS grown on a nanosized unsupported Fe-based powder catalyst. Diam. Relat. Mater. 16(8), 1565–1570 (2007)

  194. 194.

    N. Sankararamakrishnan, A. Gupta, S.R. Vidyarthi, Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. J. Environ. Chem. Eng. 2(2), 802–810 (2014)

  195. 195.

    Y.M. Scindia, A.K. Pandey, A.V. Reddy, S.B. Manohar, Selective preconcentration and determination of chromium(VI) using a flat sheet polymer inclusion sorbent: potential application for Cr(VI) determination in real samples. Anal. Chem. 74(16), 4204–4212 (2002)

  196. 196.

    K. Selvi, S. Pattabhi, K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour. Technol. 80(1), 87–89 (2001)

  197. 197.

    N.L.W. Septiani, B. Yuliarto, H.K. Dipojono, Multiwalled carbon nanotubes–zinc oxide nanocomposites as low temperature toluene gas sensor. Appl. Phys. A 123(3), 166 (2017)

  198. 198.

    P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A Gen. 253(2), 337–358 (2003)

  199. 199.

    M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M. Huang, M. Huang, J. Hone, Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312(5773), 554–556 (2006)

  200. 200.

    M.J. Shadbad, A. Mohebbi, A. Soltani, Mercury(II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Korean J. Chem. Eng. 28(4), 1029–1034 (2011)

  201. 201.

    H.A. Shawky, A.H.M. El-Aassar, D.E. Abo-Zeid, Chitosan/carbon nanotube composite beads: preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. J. Appl. Polym. Sci. 125(S1), E93–E101 (2012)

  202. 202.

    R.M. Shrestha, M. Varga, I. Varga, A.P. Yadav, B.P. Pokharel, R.R. Pradhananga, Removal of Ni (II) from aqueous solution by adsorption onto activated carbon prepared from Lapsi (Choerospondias axillaris) seed stone. J. Inst. Eng. 9(1), 166–174 (2013)

  203. 203.

    A. Shukla, Y. Zhang, P. Dubey, J.L. Margrave, S.S. Shukla, The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 95(1–2), 137–152 (2002)

  204. 204.

    E.S. Shumate, W.G. Strandberg, Accumulation of metals by microbial cells. Compr. Biotechnol. 13, 235–247 (1985)

  205. 205.

    G.S. Simate, S.E. Iyuke, S. Ndlovu, M. Heydenrych, L.F. Walubita, Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ. Int. 39(1), 38–49 (2012)

  206. 206.

    S. Singhal, S. Dixit, A.K. Shukla, Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures. Appl. Phys. A 125(2), 80 (2019)

  207. 207.

    S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin, The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006)

  208. 208.

    S. Sobhanardakani, R. Zandipak, M. Cheraghi, Adsorption of Cu2+ ions from aqueous solutions using oxidized multi-walled carbon nanotubes. Avicenna J. Environ. Health Eng. 2(1), e790 (2015)

  209. 209.

    A. Somayajula, A.A. Aziz, P. Saravanan, M. Matheswaran, Adsorption of mercury (II) ion from aqueous solution using low-cost activated carbon prepared from mango kernel. Asia Pac. J. Chem. Eng. 8(1), 1–10 (2013)

  210. 210.

    M.K. Sreedhar, A. Madhukumar, T.S. Anirudhan, Evaluation of an adsorbent prepared by treating coconut husk with polysulphide for removal of mercury from wastewater. Indian J. Eng. Mater. Sci. 6(5), 279–285 (1999)

  211. 211.

    A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2007)

  212. 212.

    W. Sun, B. Jiang, F. Wang, N. Xu, Effect of carbon nanotubes on Cd (II) adsorption by sediments. Chem. Eng. J. 264, 645–653 (2015)

  213. 213.

    M. Taghizadeh, A.A. Asgharinezhad, N. Samkhaniany, A. Tadjarodi, A. Abbaszadeh, M. Pooladi, Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. Microchim. Acta 181(5–6), 597–605 (2014)

  214. 214.

    X. Tan, M. Fang, C. Chen, S. Yu, X. Wang, Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon 46(13), 1741–1750 (2008)

  215. 215.

    B.S. Tawabini, S.F. Al-Khaldi, M.M. Khaled, M.A. Atieh, Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ. Sci. Health Part A 46(3), 215–223 (2011)

  216. 216.

    M. Teker, M. IMAMOĞLU, Ö. SALTABAŞ, Adsorption of copper and cadmium ions by activated carbon from rice hulls. Turk. J. Chem. 23(2), 185–192 (1999)

  217. 217.

    M. Terronesa, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, H. Terrones, Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)

  218. 218.

    M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185(1), 140–147 (2011)

  219. 219.

    United Nations World Water Assessment Programme (WWAP)/UN-Water, The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UNESCO, Paris, 2018)

  220. 220.

    I. Uzun, F. Guzel, Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk. J. Chem. 24(3), 291–297 (2000)

  221. 221.

    S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 149(1), 226–233 (2007)

  222. 222.

    Z. Veličković, G.D. Vuković, A.D. Marinković, M.S. Moldovan, A.A. Perić-Grujić, P.S. Uskoković, M.Đ. Ristić, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem. Eng. J. 181–182, 174–181 (2012)

  223. 223.

    D. Vu, Z. Li, H. Zhang, W. Wang, Z. Wang, X. Xu, C. Wang, Adsorption of Cu (II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J. Colloid Interface Sci. 367(1), 429–435 (2012)

  224. 224.

    G.D. Vuković, A.D. Marinković, M. Čolić, M.Đ. Ristić, R. Aleksić, A.A. Perić-Grujić, P.S. Uskoković, Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 157(1), 238–248 (2010)

  225. 225.

    H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci. 316(2), 277–283 (2007)

  226. 226.

    J. Wang, X. Ma, G. Fang, M. Pan, X. Ye, S. Wang, Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions. J. Hazard. Mater. 186(2–3), 1985–1992 (2011)

  227. 227.

    Q. Wang, J. Li, C. Chen, X. Ren, J. Hu, X. Wang, Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem. Eng. J. 174(1), 126–133 (2011)

  228. 228.

    S. Wang, W. Gong, X. Liu, Y. Yao, Y. Gao, Q. Yue, Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 58(1), 17–23 (2007)

  229. 229.

    S. Wang, L. Tan, J. Jiang, J. Chen, L. Feng, Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co (II) ions. J. Radioanal. Nucl. Chem. 295(2), 1305–1312 (2013)

  230. 230.

    Y. Wang, L. Gao, J. Sun, Y. Liu, S. Zheng, H. Kajiura, K. Noda, An integrated route for purification, cutting and dispersion of single-walled carbonnanotubes. Chem. Phys. Lett. 432(1–3), 205–208 (2006)

  231. 231.

    Z. Wang, Mechanisms of cadmium toxicity to various trophic saltwater organisms (Nova Science Publishers, Hauppauge, 2010)

  232. 232.

    P.G. Wiles, J. Abrahamson, Carbon fiber layers on arc electrodes—I: their properties and cool-down behavior. Carbon 16(5), 341–349 (1978)

  233. 233.

    K. Wilson, H. Yang, C.W. Seo, W.E. Marshall, Select metal adsorption by activated carbon made from peanut shells. Biosour. Technol. 97(18), 2266–2270 (2007)

  234. 234.

    World Health Organization, WHO, Zinc in Drinking-Water, Guidelines for Drinking-Water Quality, Geneva. (WHO/SDE/WSH/03.04/17), Vol. 2 (2003)

  235. 235.

    World Health Organization, Guidelines for drinking water quality Incorporating First and Second Addenda, vol. 1, Recommendations, third edition, Geneva, Switzerland (2008)

  236. 236.

    L. Xiong, C. Chen, Q. Chen, J. Ni, Adsorption of Pb(II) and Cd (II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. J. Hazard. Mater. 189(3), 741–748 (2011)

  237. 237.

    D. Xu, X. Tan, C. Chen, X. Wang, Removal of Pb(II) from aqueous solution by oxidized multi-walled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008)

  238. 238.

    J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195, 351–364 (2018)

  239. 239.

    K. Yaghmaeian, R.K. Mashizi, S. Nasseri, A.H. Mahvi, M. Alimohammadi, S. Nazmara, Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. J. Environ. Health sci. Eng. 13, 55 (2015)

  240. 240.

    C.M. Yang, K. Kaneko, M. Yudasaka, S. Iijima, Surface chemistry and pore structure of purified HiPco single-walled carbon nanotube aggregates. Phys. B 323(1–4), 140–142 (2002)

  241. 241.

    J.Y. Yang, X.Y. Jiang, F.P. Jiao, J.G. Yu, X.Q. Chen, Fabrication of diiodocarbene functionalized oxidized multi-walled carbon nanotube and its aqueous adsorption performance toward Pb(II). Environ. Earth Sci. 76(20), 677 (2017)

  242. 242.

    Q.H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett. 345(1–2), 18–24 (2001)

  243. 243.

    S. Yang, J. Li, D. Shao, J. Hu, X. Wang, Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166(1), 109–116 (2009)

  244. 244.

    J. Yang, Y.Li Dong, J. Liu, F. Min, Y. Li, Removal of Co(II) from aqueous solutions by sulfonated magnetic multi-walled carbon nanotubes. Chem. Eng. 32(11), 2247–2256 (2015)

  245. 245.

    L.J. Yu, S.S. Shukla, K.L. Dorris, A. Shukla, J.L. Margrave, Adsorption of chromium from aqueous solutions by maple sawdust. J. Hazard. Mater. 100(1–3), 53–63 (2003)

  246. 246.

    Jin-Gang Yu, Xiu-Hui Zhao, Yu. Lin-Yan, Fei-Peng Jiao, Jian-Hui Jiang, Xiao-Qing Chen, Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nuclear Chem. 299(3), 1155–1163 (2014)

  247. 247.

    X. Yu, T. Luo, Y. Zhang, Y. Jia, B. Zhu, X. Fu, X. Huang, Adsorption of lead(II) on O2-plasma-oxidized multi-walled carbon nanotubes. ACS Appl. Mater. Interfaces. 3(7), 2585–2593 (2011)

  248. 248.

    K. Zare, V.K. Gupta, O. Moradi, A.H. Makhlouf, M. Sillanpää, M.N. Nadagouda, M. Kazemi, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J. Nanostruct. Chem 5(2), 227–236 (2015)

  249. 249.

    M. Zenasni, B. Meroufel, S. Benfarhi, A. Merlin, S. Molina, B. George, Adsorption of zinc in aqueous solution onto natural maghnite modified by 3-aminopropyltriethoxysilane. J. Mater. Environ. Sci. 6(3), 826–833 (2015)

  250. 250.

    D. Zhang, Y. Yin, J. Liu, Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: adsorption behavior and the impacts of some environmentally relevant factors. Chem. Speciat. Bioavailab. 29(1), 161–169 (2017)

  251. 251.

    J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, Z. Du, Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107(16), 3712–3718 (2003)

  252. 252.

    S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158(3), 599–607 (2010)

  253. 253.

    X. Zhang, M. Chen, Y. Yu, T. Yang, J. Wang, Polyelectrolyte-modified multi-walled carbon nanotubes for the adsorption of chromium(VI). Anal. Methods 3(2), 457–462 (2011)

  254. 254.

    G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, X. Wang, Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40(41), 10945–10952 (2011)

  255. 255.

    Y. Zhao, B.L. Allen, A. Star, Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 115(34), 9536–9544 (2011)

  256. 256.

    H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167(1–3), 141–147 (2009)

  257. 257.

    H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172(2–3), 1591–1596 (2009)

  258. 258.

    M.S. Zoromba, M.I. Ismail, M. Bassyouni, M.H. Abdel-Aziz, N. Salah, A. Alshahrie, A. Memic, Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment. Colloids Surf. A 520, 121–130 (2017)

Download references

Author information

Correspondence to M. Bassyouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bassyouni, M., Mansi, A.E., Elgabry, A. et al. Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges. Appl. Phys. A 126, 38 (2020).

Download citation